Изменение рельефа поверхности кварцевого стекла при ультразвуковой обработке

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе приведены результаты определения изменений рельефа поверхности пластин из кварцевого стекла под действием ультразвуковых колебаний методом вариации Аллана. Применение этого метода позволило количественно оценить составляющие шероховатости, соответствующие поверхностным дефектам определенного размера. Показано, что длительная ультразвуковая обработка пластин из кварцевого стекла при плотности мощности излучения 10 Вт/см2 приводит к существенному изменению поверхности: высота рельефа, связанная с мелкомасштабными поверхностными дефектами размером 0.125 мкм, увеличилась примерно на 40%, а с крупными дефектами (12 мкм) – уменьшилась примерно на 30%. Наблюдаемые изменения поверхности, по-видимому, связаны с кавитационным разрушением крупномасштабных поверхностных дефектов локальными кумулятивными струями.

About the authors

Б. Лунин

Московский государственный университет им. М.В. Ломоносова

Author for correspondence.
Email: luninboris@yandex.ru
Россия, 119991, Москва, Ленинские горы, 1

А. Николаев

Московский государственный университет им. М.В. Ломоносова

Email: luninboris@yandex.ru
Россия, 119991, Москва, Ленинские горы, 1

References

  1. Bu X., Alheshibri M. The Effect of Ultrasound on Bulk and Surface Nanobubbles: A Review of the Current Status // Ultrason. Sonochem. 2021. V. 76. P. 105629. https://doi.org/10.1016/j.ultsonch.2021.105629
  2. Kruszelnicki M., Hassanzadeh A., Legawiec K.J., Polowczyk I., Kowalczuk P.B. Effect of Ultrasound Pre-Treatment on Carbonaceous Copper-Bearing Shale Flotation // Ultrason. Sonochem. 2022. V. 84. P. 105962. https://doi.org/10.1016/j.ultsonch.2022.105962
  3. Lyubimova T., Rybkin K., Oscar Fattalov O., Kuchinskiy M., Filippov L. Experimental Study of Temporal Dynamics of Cavitation Bubbles Selectively Attached to the Solid Surfaces of Different Hydrophobicity under the Action of Ultrasound // Ultrasonics. 2021. V. 117. P. 106516. https://doi.org/10.1016/j.ultras.2021.106516
  4. Novikova L., Ayrault P., Fontaine C., Chatel G., Jérôme F., Belchinskaya L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates // Ultrason. Sonochem. 2016. V. 31. P. 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
  5. Lee J., Yasui K., Ashokkumar M., Kentish S.E. Quantification of Cavitation Activity by Sonoluminescence to Study the Sonocrystallization Process under Different Ultrasound Parameters // Cryst. Growth. Des. 2018. V. 18. P. 5108–5115. https://doi.org/10.1021/acs.cgd.8b00547
  6. Аганин А.А., Гусева Т.С., Косолапова Л.А., Малахов В.Г. Динамика пузырька и импульсное нагружение твердой поверхности при акустическом воздействии // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2021. Т. 163. С. 31–47. https://doi.org/10.26907/2541-7746.2021.1.31-47
  7. Аганин А.А., Косолапова Л.А., Малахов В.Г. Динамика пузырька газа в жидкости вблизи твердой поверхности // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2018. Т. 160. Вып. 1. С. 154–164.
  8. Шероховатость поверхности. Параметры и характеристики. ГОСТ 2789-73. Стандартинформ. 2006.
  9. Айман О. Динамика формирования поверхностной шероховатости при обработке свободным абразивом // Дис. … к.т.н. 05.11.07. С-П.: Университет ИТМО, 2005. 131 с.
  10. Miller P.E., Suratwala T.I., Wong L.L., Feit M.D., Menapace J.A., Davis P.J., Steele R.A. The Distribution of Subsurface Damage in Fused Silica // Laser-Induced Damage Opt. Mater. 2005. V. 5991. P. 599101. https://doi.org/10.1117/12.638821
  11. Patrikar R.M. Modeling and Simulation of Surface Roughness // Appl. Surf. Sci. 2004. V. 228. № 1–4. P. 213–220. https://doi.org/10.1016/j.apsusc.2004.01.010
  12. Pfeifer P. Fractal Dimension as Working Tool for Surface-roughness Problems //Appl. Surf. Sci. 1984. V. 18. № 1–2. P. 146–164.
  13. Jahn R., Truckenbrodt H. A Simple Fractal Analysis Method of the Surface Roughness // J. Mater. Process. Technol. 2004. V. 145. № 1. P. 40–45. https://doi.org/10.1016/S0924-0136(03)00860-4
  14. Панасюк Г.П., Козерожец И.В., Ворошилов И.Л., Ивакин Ю.Д., Привалов В.И., Данчевская М.Н. Формы воды на поверхности и в объеме диоксида кремния // Журн. неорган. химии. 2021. Т. 66. № 5. С. 623–630. https://doi.org/10.31857/S0044457X21050123
  15. Banes J.A. Characterization of Frequency Stability // IEEE Trans. Instrum. Meas. 1971. IM-20. № 2. P. 105–120.
  16. Zhou D., Xu P., Gu Q. Stochastic Nested Variance Reduction for Nonconvex Optimization // J. Mach. Learn. Res. 2020. V. 21. № 1. P. 4130–4192.
  17. Ma Y., Hu Y., Qiao S., He Y., Tittel F.K. Trace Gas Sensing Based on Multi-Quartz-Enhanced Photothermal Spectroscopy // Photoacoustics. 2020. V. 20. P. 100206. https://doi.org/10.1016/j.pacs.2020.100206
  18. Wang P., Luan C-Y., Qiao M., Um M., Zhang J. Single Ion Qubit with Estimated Coherence Time Exceeding One Hour // Nature Commin. 2021. V. 12. 233. https://doi.org/10.1038/s41467-020-20330-w
  19. ALAMATH. Allan Variance Software. URL: http://www.alavar.org/.
  20. Флинн Г. Физика акустической кавитации в жидкостях // Физическая акустика / Под ред. Мэзона У. М.: Мир, 1967. Т. 1. С. 7–138.
  21. Нумачи Ф. Экспериментальное исследование кавитации, возбуждаемой ультразвуком // Труды американского общества Инженеров механиков. Теоретические основы инженерных расчетов. Сер.Д. 1965. № 4. С. 128–139.
  22. Kornfeld M., Suvorov L. On the Destructive Action of Cavitation // J. Appl. Phys. 1944. V. 15. № 3. P. 495–497.
  23. Peng C., Tian S., Li G., Wei M. Enhancement of Cavitation Intensity and Erosion Ability of Submerged Cavitation Jet by Adding Micro-Particles // Ocean Eng. 2020. V. 209. P. 107516. https://doi.org/10.1016/j.oceaneng.2020.107516
  24. Tan K.L., Yeo S.H. Bubble Dynamics and Cavitation Intensity in Milli-Scale Channels under an Ultrasonic Horn // Ultrason. Sonochem. 2019. V. 58. P. 104666. https://doi.org/10.1016/j.ultsonch.2019.104666
  25. Roylance D. Introduction to Fracture Mechanics // URL: www.pharmacoengineering.com/wp-content/upload/ 2018/03/MIT3_11F99_frac.pdf
  26. Ma G., Xia W., Xie G., Peng Y. Ultrasound-Assisted Detachment Behavior of Glass Beads and Fragments from a Fixed Bubble //Powder Technol. 2019. V. 355. P. 611–616. https://doi.org/10.1016/j.powtec.2019.07.092

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (242KB)
3.

Download (40KB)
4.

Download (135KB)

Copyright (c) 2023 Б.С. Лунин, А.Л. Николаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies