Analysis of the Spring Barley (Hordeum vulgare L.) Isoenzyme Polymorphism Connection with Its Tolerance to the Cadmium Influence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In was the laboratory experiment carried on with the spring barley variants, which shown a contrasting reactions to the cadmium influence. The topic of this work was a searching of the connection of the barley variants response to the toxic stress with the isoenzyme polymorphism of some ferments, which are determined a plants tolerance to the environmental stress. It was taken 14 spring barley variants with the different geographic origin (7 – tolerant to Cd2+ and 7 – sensitive) for this task. Such variants were selected on the base of the morphometric criteria in our previous work. The seeds of these variants were germinated and then a protein extracts were prepared from the seedlings. The extracts were separated by electrophoresis in the polyacrilamide gel. The gel blocks after this process were stained for discovering of the enzyme activity zones. The list of the ferments used was follows: superoxidedismutase, peroxidase, glutamatedehydrohenase, alcoholdehydrohenase, malatedehydrohenase, glutationedehydrohenase, glucose-6-phosphatedehydrohenase, catalase. The frequencies of all enzyme activity zones were counted, and thus such frequencies were compared for the groups of the Cd2+ tolerant and sensitive barley variants. Consequently, it was discovered the specific alleles, which are found in the tolerant or sensitive variants with the much probability. Therefore, some conclusion can be stated: the reaction of the selected barley variant to the Cd2+ influence is connected with some specific isozyme variants. The data, collected in this work, can be used for forecasting of the tolerance of the selected barley variants to the Cd2+.

About the authors

A. V. Dikarev

Russian Institute of Radiology and Agroecology

Author for correspondence.
Email: ar.djuna@yandex.ru
Russia, 249032, Kaluga region, Obninsk, Kiev highway 109 km

V. G. Dikarev

Russian Institute of Radiology and Agroecology

Email: ar.djuna@yandex.ru
Russia, 249032, Kaluga region, Obninsk, Kiev highway 109 km

N. S. Dikareva

Russian Institute of Radiology and Agroecology

Email: ar.djuna@yandex.ru
Russia, 249032, Kaluga region, Obninsk, Kiev highway 109 km

References

  1. Гуральчук Ж.З. Механизмы устойчивости растений к действию тяжелых металлов // Физиол. и биохим. культ. раст. 1994. Т. 26. № 2. С. 107–117.
  2. Феник С.И., Трофимяк Т.Б., Блюм Я.Б. Механизмы формирования устойчивости растений к тяжелым металлам // Усп. совр. биол. 1995. Т. 115. № 3. С. 261–276.
  3. Clemens S. Molecular mechanisms of plant metal tolerance and homestasis // Planta. 2001. V. 212. P. 475–486.
  4. Sawidis T., Breuste J., Mitrovic M., Pavlovic P., Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities // Environ. Pollut. 2011. P. 3560–3570.
  5. Кулаева О.А., Цыганов В.Е. Молекулярно-генетические основы устойчивости высших растений к кадмию и его аккумуляции // Экол. генетика. 2010. Т. 8. С. 3–15.
  6. Гераськин С.А., Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Анализ внутривидового полиморфизма ячменя по устойчивости к действию кадмия // Агрохимия. 2021. № 8. С. 57–64.
  7. Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Влияние нитрата свинца на морфологические и цитогенетические показатели растений ярового двурядного ячменя (Hordeum vulgare L.) // Агрохимия. 2014. № 7. С. 45–52.
  8. Дикарев А.В., Дикарев В.Г., Дикарева Н.С., Гераськин С.А. Внутривидовой полиморфизм ярового ячменя (Hordeum vulgare L.) по устойчивости к действию свинца // Сел.-хоз. биол. 2014. № 5. С. 78–87.
  9. Дикарев А.В., Дикарев В.Г., Дикарева Н.С., Гераськин С.А. Исследование изозимного полиморфизма у сортов ярового ячменя (Hordeum vulgare L.), контрастных по устойчивости к свинцу // Сел.-хоз. биол. 2016. Т. 51. № 1. С. 89–99.
  10. Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Сравнительный анализ частоты цитогенетических эффектов в апикальной меристеме корешков проростков сортов ярового ячменя (Hordeum vulgare L.), контрастных по устойчивости к свинцу // Тр. по прикл. бот., генет. и селекции. 2016. Т. 177. № 1. С. 50–68.
  11. Дикарев А.В., Дикарев В.Г., Дикарева Н.С., Гераськин С.А. Факторный анализ полиморфизма сортов ячменя по изоэнзимам, маркирующим устойчивость к свинцу // Агрохимия. 2017. № 6. С. 73–80.
  12. Сарапульцев Б.И., Гераськин С.А. Генетические основы радиорезистентности и эволюция. М.: Атомиздат, 1993. С. 250.
  13. Конарев В.Г. Белки растений как генетические маркеры. М.: Колос, 1983. С. 320.
  14. Созинов А.А. Полиморфизм белков и его значение в генетике и селекции. М.: Наука, 1985. С. 272.
  15. Чесноков Ю.В. ДНК-фингерпринтинг и анализ генетического разнообразия у растений // Сел.-хоз. биол. 2005. № 1. С. 20–40.
  16. Алтухов Ю.П. Генетические процессы в популяциях. М.: Академкнига, 2003. С. 431.
  17. Тимошкина Н.Н., Водолажский Д.И., Усатов А.В. Молекулярно-генетические маркеры в исследовании внутри- и межвидового полиморфизма осетровых рыб (Acipenseriformes) // Экол. генетика. 2010. Т. 8. № 1. С. 12–24.
  18. Алтухов Ю.П., Салменкова Е.А. Полиморфизм ДНК в популяционной генетике // Генетика. 2002. Т. 38. № 9. С. 1173–1195.
  19. Cartes P., McManus M., Wulf–Zotelle C. Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminum stress // Plant Soil. 2012. V. 350. P. 353–363.
  20. Wang Y., Greger M. Clonal differences in mercury tolerance, accumulation and distribution in willow // J. Environ. Qual. 2004. V. 33. P. 1779–1785.
  21. ГОСТ 12038-84. Семена сельскохозяйственных культур. Методы определения всхожести. М.: Стандартинформ, 2010. С. 25.
  22. Маурер Г. Диск-электрофорез. М.: Мир, 1971. С. 247.
  23. Плешков Б.П. Практикум по биохимии растений. М.: Колос, 1976. С. 256.
  24. Остерман Л.А. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. М.: Наука, 1981. С. 288.
  25. Manchenko G.P. Handbook of detection of enzymes on electrophoretic gels. N.Y.: CRC Press, 1994. P. 268.
  26. Зыкова Н.Ю., Лапкова О.С., Хлоповских Ю.Г. Методы математической обработки данных. Воронеж: Издат.-полиграф. центр ВоронежГУ, 2008. С. 84.
  27. Boening D.W. Ecological effects, transport and fate of mercury: a general review // Chemosphere. 2000. V. 40. P. 1335–1351.
  28. Wang Y., Greger M. Clonal differences in mercury tolerance, accumulation and distribution in willow // J. Environ. Qual. 2004. V. 33. P. 1779–1785.
  29. Zhou Z.S., Huang S.Q., Guo K., Mehta S.K., Zhang P.C., Yang Z.M. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. // J. Inorg. Biochem. 2007. V. 101. P. 1–9.
  30. Drazkiewitcz M., Scorczinska-Polit E., Krupa Z. The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress // Chemosphere. 2007. V. 67. P. 188–193.
  31. Malecka A., Jarmuszkiewicz W., Tomaszewska B. Antioxidative defense to lead stress in subcellular compartments of pea root cells // Acta Biochim. Polonica. 2001. V. 48. № 3. P. 687–690.
  32. Cho U.H., Park J.O. Mercury-induced oxidative stress in tomato seedlings // Plant Sci. 2000. V. 156. P. 1–9.
  33. Cargnelutti D., Tabaldi L.A., Spanevello R.M. Mercury toxicity induces oxidative stress in growing cucumber seedlings // Chemosphere. 2006. V. 65. P. 999–1006.
  34. Chen J., Shiyab S., Han F.X. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata / Ecotoxicology. 2009. V. 18. P. 110–121.
  35. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. 2004. V. 55. P. 373–399.
  36. del Ri’o L.A., Sandalio L.M., Corpas F.J., Palma J.M., Barroso J.B. Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling // Plant Physiol. 2006. V. 141. P. 330–335.
  37. Полесская О.Г. Растительная клетка и активные формы кислорода. М.: Университет, 2007. 140 с.
  38. Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants // Trends Plant Sci. 2004. V. 9. P. 490–498.
  39. Fried R. Enzymatic and non-enzymatic assay of superoxide-dismutase // Biochemie. 1975. V. 57. P. 657–660.
  40. Inze D., Montagu M. Oxidative stress in plants // Current Opinion in Biotechnology. 1995. V. 6. P. 153–158.
  41. Scandalios J.G. Oxygen stress and superoxide dismutases // Plant Physiol. 1993. V. 101. P. 7–12.
  42. Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants // J. Exp. Bot. 2002. V. 53. P. 1331–1341.
  43. Rancelis V., Cesniene T., Kleizaite V. Influence of cobalt uptake by Vicia faba seeds on chlorophyll morphosis induction, SOD polymorphism and DNA methylation // Environ. Toxicol. 2010. V. 10. P. 5–15.
  44. Tanaka Y. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts // Plant Sci. 1999. V. 148. P. 131–138.
  45. Taylor N.L., Day A.C. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism // J. Exp. Bot. 2004. V. 55. № 394. P. 1–10.
  46. Vacca R.A. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock–induced programmed cell death in tobacco // Plant Physiol. 2004. V. 134. № 3. P. 1100–1112.
  47. Mallick S., Sinam G., Sinha S. Study on arsenate tolerant and sensitive cultivars of Zea mays L.: differential detoxification mechanism and effect on nutrient status // Ecotoxicol. Environ. Saf. 2011. V. 74. P. 1316–1324.
  48. Elbaz A., Wei Y., Meng Q. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamidomonas reinhardtii // Ecotoxicology. 2010. V. 10. P. 8–18.
  49. Dat J., Vandenabeele S., Vranova E. Dual action of the active oxygen species during plant stress responses // Cell. Mol. Life Sci. 2000. V. 57. P. 779–795.
  50. Lanubile A., Bernardi J., Marocco A. Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticilloides // Environ. Exp. Bot. 2012. V. 78. P. 39–46.
  51. Lamb C., Dixon R.A. The oxidative burst in plant disease resistance // Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1997. V. 48. P. 251–275.
  52. Bolwell G.P., Butt V.S., Davies D.R., Zimmerlin A. The origin of the oxidative burst in plants // Free Radic. Res. 1995. V. 23. P. 517–523.
  53. Lane B.G. Oxalate, germin, and the extracellular matrix of higher plants // FASEB J. 1994. V. 8. P. 294–301.
  54. Hammond-Kosack K.E., Jones J.D.G. Resistance gene-dependent plant defense responses // Plant Cell. 1996. V. 8. P. 1773–1791.
  55. Greenberg J.T., Guo A., Klessig D.F., Ausubel F.M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions // Cell. 1994. V. 77. P. 551–563.
  56. Grabowska A., Nowicki M., Kwinta J. Glutamate dehydrogenase of the germinating triticale seeds: gene expression, activity distribution and kinetic characteristics // Acta Physiol. Plant. 2011. V. 33. P. 1981–1990.
  57. Loulakakis K.A., Roubelakis-Angelakis K.A. The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities // Physiol. Plant. 1996. V. 96. P. 29–35.
  58. Purnell M.P., Scopelites D.S., Roubelakis-Angelakis K.A. Modulation of higher-plant NAD(H) dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta-subunit level // Planta. 2005. V. 222. P. 167–180.
  59. Ameziane R., Bernhardt K., Lightfoot D.A. Expression of the bacterial gdhA gene encoding a glutamate dehydrogenase in tobacco and corn increased tolerance to the phosphinothricin herbicide // Nitrogen in a sustainable ecosystem: From the cell to the plant / Eds. M.A. Martins-Loucao, S.H. Lips. Leiden, the Netherlands: Backhuys Publishers, 2000. P. 339–343.
  60. Mungur R., Glass A.D.M., Goodenow D.B. Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene // J. Biomed. Biotechnol. 2005. № 2. P. 198–214.
  61. Mungur R., Glass A.D., Wood A.J., Lightfoot D.A. Increased water deficit tolerance in Nicotiana tabacum expressing the Escherichia coli glutamate dehydrogenase gene // Plant Cell Physiol. 2006. V. 54. P. 260–272.
  62. Geburek T., Scholz F., Knabe W. Genetic studies by isozyme gene loci on tolerance and sensitivity in air polluted Pinus sylvestris field trial // Silvae Genetica. 1987. V. 36. № 2. P. 49–53.
  63. Wooton J.C. Re-assessment of ammonium-ion affinities of NADP-specific glutamate dehydrogenases // Biochem. J. 1983. V. 209. P. 527–531.
  64. Thompson C.E., Fernandes C.L., de Souza O.N., de Freitas L.B., Salzano F.M. Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes // J. Mol. Model. 2010. V. 16. P. 919–928.
  65. Gietl C. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles // Biochim. Biophys. Acta. 1992. V. 1100. P. 217–234.
  66. Dasika S.K., Vinnakota K.C., Beard D.A. Determination of the catalytic mechanism for mitochondrial malate dehydrogenase // Biophys. J. 2015. V. 108. № 1. P. 408–419.
  67. Sharma P., Dubey R.S. Lead toxicity in plants // Braz. J. Plant. Physiol. 2005. V. 17. P. 35–52.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (20KB)

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies