ICP-OES-Analysis for Humic Substance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibilities of optical emission spectrometry with inductively coupled plasma (OES-ICP analysis) (in radial plasma observation) of humic preparations (HP) are evaluated, the proposed technique allows quantifying up to 24 elements (As, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Si, S, Sr, Ti, V and Zn). The list of these elements will allow determining the value of such preparations for soil nutrition, and will also help to avoid danger if the content of toxic impurities in them goes beyond their maximum permissible concentrations. In the absence of standard samples with certified contents of the elements to be determined, the correctness of the analysis for the macrocomponent composition is confirmed by comparing the results of gravimetric determination of the ash content of the studied objects with the calculated data obtained when processing the results of OES-ICP analysis. Systematic errors in the determination of trace impurities were minimized by using the method of adding standard solutions (from matrix influences), as well as 6 parallel measurements of samples prepared independently of each other. The correctness of the methodology was also evaluated by using model solutions close to the possible micro-impurity mineral composition of HP using the Student’s t-test. The results obtained for the isolated fraction of humic acids are compared with the literature data.

About the authors

R. P. Kolmykov

Federal Research Center of Coal and Coal Chemistry SB RAS

Email: kolmykoff.roman@yandex.ru
Russia, 650099, Kemerovo, prosp. Sovetskiy 18

References

  1. Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected humic substances // Soil Water Res. 2014. V. 9 (1). P. 9–17. https://doi.org/10.17221/39/2013-SWR
  2. Dudek M., Łabaz B., Bednik M., Medýnska-Juraszek A. Humic substances as indicator of degradation rate of chernozems in South-Eastern Poland // Agronomy. 2022. V. 12. P. 733. https://doi.org/10.3390/agronomy12030733
  3. Mellett T., Buck K.N. Spatial and temporal variability of trace metals (Fe, Cu, Mn, Zn, Co, Ni, Cd, Pb), iron and copper speciation, and electroactive Fe-binding humic substances in surface waters of the eastern Gulf of Mexico // Marine Chem. 2020. V. 227. 103891. https://doi.org/10.1016/j.marchem.2020.103891
  4. Bi D., Yuan G., Wei J., Xiao L., Feng L., Meng F., Wang J. A Soluble humic substance for the simultaneous removal of cadmium and arsenic from contaminated soils // Inter. J. Environ. Res. Public. Health. 2019. V. 16. 4999. https://doi.org/10.3390/ijerph16244999
  5. Peña-Méndez E.M., Havel J., Patočka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine // J. Appl. Biomed. 2004. V. 3. P. 13–24. https://doi.org/10.32725/jab.2005.002
  6. Anuchina M.M., Pankratov D.A., Abroskin D.P., Kulikova N.A., Gabbasova D.T., Matorin D.N., Volkov D.S., Perminova I.V. Estimating the toxicity and biological availability for interaction products of metallic iron and humic substances // Moscow Univer. Soil Sci. Bul. 2019. V. 74. № 5. P. 193–198. https://doi.org/10.3103/S0147687419050028
  7. Ketris M.P., Yudovich Ya.E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals // Inter. J. Coal Geol. 2009. V. 78. P. 135–148. https://doi.org/10.1016/j.coal.2009.01.002
  8. Zhang S., Song J., Du Q., Cheng K., Yang F. Analog synthesis of artificial humic substances for efficient removal of mercury // Chemosphere. 2020. V. 250. 126606. https://doi.org/10.1016/j.chemosphere.2020.126606
  9. Radaelli M., Scalabrin E., Toscano G., Capodaglio G. High performance size exclusion chromatography-inductively coupled plasma-mass spectrometry to study the copper and cadmium complexation with humic acids // Molecules. 2019. V. 24 (17). P. 3201. https://doi.org/10.3390/molecules24173201
  10. de Melo B.A.G., Motta F.L., Andrade Santana M.H. Humic acids: Structural properties and multiple functionalities for novel technological developments // Mater. Sci. Engin. 2016. C. 62. P. 967–974. https://doi.org/10.1016/j.msec.2015.12.001
  11. Grigorieva E.E. About humic preparations // Inter. Agricult. J. 2020. V. 5. P. 43–58. https://doi.org/10.24411/2588-0209-2020-10210
  12. ГОСТ 55661-2013 Топливо твердое минеральное. Определение зольности. М.: Стандартинформ, 2014. 29 c.
  13. Xavier D.M., Silva A.S., Santos R.P., Mesko M.F., Costa S.N., Freire V.N., Cavada B.S., Martins J.L. Characterization of the coal humic acids from the Candiota coalfield, Brazil // Inter. J. Agricult. Sci. 2012. V. 4 (5). P. 238.
  14. Sarlaki E., Paghaleh A.S., Kianmehr M.H., Vakilian K.A. Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite // Chem. Technol. 2020. V. 14 (3). P. 353–361. https://doi.org/10.23939/chcht14.03.353
  15. He Z., Ohno T., Cade-Menun B.J., Erich S.M., Honeycutt W.C. Spectral and chemical characterization of phosphates associated with humic substances // Soil Sci. Soc. Am. J. 2006. V. 70. P. 1741–1751. https://doi.org/10.2136/sssaj2006.0030
  16. de la Rosa G., Peralta-Videa J.R., Gardea-Torresdey J.L. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions // J. Hazard. Mater. 2003. B. 97. P. 207–218. https://doi.org/10.1016/S0304-3894(02)00262-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (111KB)

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies