Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electrolytes in Advanced Batteries

Authors

  • Rebecca Boucard Albany State University, Albany GA
  • Paige Reagan Albany State University, Albany GA
  • Ghislain R Mandouma Albany State University, USA

DOI:

https://doi.org/10.31686/ijier.vol6.iss2.955

Abstract

The purpose of this study was to synthesize polysubstituted tetraarylphosphonium/tetrakis (pentafluorophenyl) borate salts 3, also known as TAPR/TFAB where R is a substituent, and to measure their conductance/conductivity in low-polarity media such as tetrahydrofuran (THF) and dichloromethane (DCM). Such determination was to provide a rationale to the question of whether these compounds, and other weakly coordinating cations/anions combinations are suitable electrolytes for advanced batteries which are energized in safer, low-polarity organic solvents.

Downloads

Download data is not yet available.

Author Biographies

  • Rebecca Boucard, Albany State University, Albany GA

    Department of Chemistry and Forensic Sciences

  • Paige Reagan, Albany State University, Albany GA

    Department of Chemistry and Forensic Sciences

  • Ghislain R Mandouma, Albany State University, USA

    Department of Natural Sciences

References

Goodenough, GB, Park, KS. J. Am. Chem. Soc. 2013, 135, 1167-1176; DOI: https://doi.org/10.1021/ja3091438

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.; Energy Environ. Sci. 2011, 3243-3262; DOI: https://doi.org/10.1039/c1ee01598b

Armand, M.; Tarascon, J.M. Nature, 2008, 451, 652-657; DOI: https://doi.org/10.1038/451652a

Tarascon, J.M. Philos. Trans. R. Soc., A 2010, 368, 3227-3241 DOI: https://doi.org/10.1098/rsta.2010.0112

Gandini, A; Lacerda, T.M. Prog. Polym. Sci. 2015, 48, 1-39; DOI: https://doi.org/10.1016/j.progpolymsci.2014.11.002

Janoschka, T.; Hager, M.D.; Schubert, U.S.; Adv. Mater. 2012, 24, 6397-6409; DOI: https://doi.org/10.1002/adma.201203119

Nishida, H.; Suga, T.; Electrochemical Society Interface 2005, 32-36; DOI: https://doi.org/10.1149/2.F04054IF

Muench, S; Wild, A; Friebe, C; Haupler, B; Janoschka, T; Schubert, U.S.; Chem. Rev. 2016, 116, 9438-9484; DOI: https://doi.org/10.1021/acs.chemrev.6b00070

Brousse, K.; Martin, C.; Brisse, A.L.; Lethien, C.; Simon, P.; Taberna, P.L.; Brousse, T.;Leung, P.K.; Martin, T.; Shah, A.A.; Mohamed, M.R.; Anderson, M.A.; Palma, J.; Journal of Power Sources, 2017, 360, 243-283;

Wei, X.; Pan, W.; Duan, W.; Hollas, A.M.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.M.;

Wang, W.; Sprenkle, V.L. ACS Energy Letters, 2017, 2(9):2187- DOI: https://doi.org/10.1021/acsenergylett.7b00650

doi:10.1021/acsenergylett.7b00650;

Li, Y; Wang, X; Dong, S; Chen, X; Cui, G; Adv. Energy Mater. 2016, 6, 1600751; DOI: https://doi.org/10.1002/aenm.201600751

Krossing, I.; Raabe, I.; Angew. Chem. Int. Ed. 2004, 76, 6395-6401;

Geiger, W.E.; Barriere, F.; Accounts Chem Res 2010, 43, 1030-1039; DOI: https://doi.org/10.1021/ar1000023

Mpoukouvalas et al., Mpoukouvalas, K.; Turp, D.; Wagner, M.; Mullen, K.; Butt, H. J.; Floudas, G.; J Phys Chem B 2011, 115, 5801-5806. DOI: https://doi.org/10.1021/jp201324m

Moritz, R,; Stangenberg, R.; Baumgarten, M.; Mullen, K.; Eur. J. Org. Chem. 2015, 7, 1456-1463;

Turp, D.; Wagner, M.; Enkelmann, V.; Mullen, K.; Angew. Chem. Int. Ed., 2011, 50, 4962-4965; DOI: https://doi.org/10.1002/anie.201007070

Zhao, D.S.; Moritz, N.; Laurila, P.; Mattila, R.; Lassila, L.V.J.; Strandberg, N.; Muller,

R.; Macromolecules 2014, 47, 4567-4586; DOI: https://doi.org/10.1021/ma500480z

Wehming, K.; Moritz, S.; Schnakenburg, G.; Waldvogel, S.R.; Chem Eur J 2014, 20(39), 12463-12469; DOI: https://doi.org/10.1002/chem.201403442

LeSuer, R. J.; Buttolph, C.; Geiger, W. E., Anal. Chem., 2004, 76, 6395-6401; DOI: https://doi.org/10.1021/ac040087x

W. Schmickler, Interfacial Electrochemistry, Oxford University press, 1996; DOI: https://doi.org/10.1093/oso/9780195089325.001.0001

O. Popovych and R.P.T. Tomkins, Nonaqueous Solution Chemistry, J. Wiley and Sons, New York, 1981

Grills, D. C.; Cook, A. R.; Fujita, E.; George, M. W.; Preses, J. M.; Wishart, J. F.; Appl. Spectrosc. 2010, 64, 563; DOI: https://doi.org/10.1366/000370210791414344

Marcoux, D.; Charette, A. B. J Org Chem 2008, 73, 590-593; DOI: https://doi.org/10.1021/jo702355c

Moritz, R.; Zardalidis, G.; Butt, H. J.; Wagner, M.; Mullen, K.; Floudas, G., Macromolecules 2014, 47, 191-196; DOI: https://doi.org/10.1021/ma402137x

Yonekuta, Y.; Susuki, K.; Oyaizu, K.; Honda, K.; Nishide, H. J. Am. Chem. Soc. 2007, 129, 14128-14129; DOI: https://doi.org/10.1021/ja075553p

Wei, X.; Duan, W.; Huang, J.; Zhang, L.; Li, B.; Reed, D.; Xu, W.; Sprenkle, V.; Wang, W.; ACS Energy Lett. 2016, 1, 705−711; doi: 10.1021/acsenergylett.6b00255. DOI: https://doi.org/10.1021/acsenergylett.6b00255

Downloads

Published

2018-02-01

How to Cite

Boucard, R. ., Reagan, P. ., & Mandouma, G. R. (2018). Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electrolytes in Advanced Batteries. International Journal for Innovation Education and Research, 6(2), 116-123. https://doi.org/10.31686/ijier.vol6.iss2.955

Most read articles by the same author(s)