Neurological changes post-covid-19 infection

signs and symptoms that remain

Authors

  • João Pedro Fernandes Egídio de Toledo Universidade Brasil
  • Leonardo Arendt Ferreira Universidade Brasil
  • Leonardo Augusto de Souza Universidade Brasil
  • Flávia Roberta Posterli Cavalcante Universidade Brasil
  • Rafaela Cristina Soares Rebucci Universidade Brasil
  • Marcella Thalia Teixeira da Silva Universidade Brasil https://orcid.org/0000-0002-0796-8730
  • Márcio Miranda Santos Universidade Brasil
  • Rone Roberto Campana dos Santos Universidade Brasil
  • Hevander Gabriel Pereira de Souza Universidade Brasil https://orcid.org/0000-0002-4157-1710
  • Igor Pereira Peixoto Guimaraes Universidade Brasil
  • Rogério Rodrigo Ramos Universidade Brasil https://orcid.org/0000-0003-1977-4172

DOI:

https://doi.org/10.31686/ijier.vol10.iss9.3914

Keywords:

SARS-CoV-2, COVID-19, Clinical trial, Neurological alterations, Symptoms, Post-COVID-19 sequels

Abstract

Since 2019, humanity has faced the pandemic outbreak of COVID-19 disease, caused by the new coronavirus, SARS-CoV-2. Respiratory symptoms of the disease were investigated and monitored worldwide, however, the nervous system lesions induced by COVID-19 did not receive as much attention. The aim of this study was to highlight the neurological alterations after infection of the new coronavirus, thus highlighting the symptoms that remained after Infection by SARS-CoV-2. The review shows relevant data on drugs and SARS-CoV-2, neurological alterations, complications and adverse effects related to COVID-19. At the time of writing this article, in mid-2022, SARS-CoV-2 is still spreading in several countries and infecting the population, leaving many people with temporary or permanent sequelae because of COVID-19.

Downloads

Download data is not yet available.

Author Biography

  • Rogério Rodrigo Ramos, Universidade Brasil

    Department of Microbiology and Postgraduate Program in Biomedical engineering

References

Lauxmann MA, Santucci NE, Autrán-Gómez AM. The SARS-CoV-2 coronavirus and the COVID-19 outbreak. International Braz J Urol, 2020; 46: 6-18. Available from: https://doi.org/10.1590/S1677-5538.IBJU.2020.S101 DOI: https://doi.org/10.1590/s1677-5538.ibju.2020.s101

Organização Pan-Americana da Saúde. OPAS. OMS anuncia nome para doença causada por novo coronavírus: COVID-19; OPAS apoia ações de preparo na América Latina e Caribe. Fevereiro de 2020. Disponível em: https://www.paho.org/

Zhou P, Yang XL, Wang XG et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579: 270-273. Available from: https://doi.org/10.1038/s41586-020-2012-7 DOI: https://doi.org/10.1038/s41586-020-2012-7

Brasil. Ministério da Saúde. Coronavírus: o que você precisa saber e como prevenir o contágio. Ministério da Saúde. 2020. Available from: https://saude.gov.br/saude-de-a-z/coronavírus

Lima CMAO. Information about the new coronavirus disease (COVID-19). Radiologia Brasileira, 2020; 53(2): V-VI. Available from: https://doi.org/10.1590/0100-3984.2020.53.2e1 DOI: https://doi.org/10.1590/0100-3984.2020.53.2e1

Xiaowei L, Manman G, Yizhao P et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Analysis 2020; 10: 102-108. Available from: https://doi.org/10.1016/j.jpha.2020.03.001 DOI: https://doi.org/10.1016/j.jpha.2020.03.001

Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 2020; 95(10224): 565-574. Available from: https://doi.org/10.1016/S0140-6736(20)30251-8 DOI: https://doi.org/10.1016/S0140-6736(20)30251-8

Su S, Wong G, Shi W et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiology, 2016; 24: 490-502. Available from: https://doi.org/10.1016/j.tim.2016.03.003 DOI: https://doi.org/10.1016/j.tim.2016.03.003

Walls AC, Park YJ, M. Tortorici MA et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020; 181: 281-92. Available from: https://doi.org/10.1016/j.cell.2020.02.058 DOI: https://doi.org/10.1016/j.cell.2020.02.058

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 2015; 1282: 1-23. Available from: https://doi.org/10.1007/978-1-4939-2438-7_1 DOI: https://doi.org/10.1007/978-1-4939-2438-7_1

Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus, 2020; 12(3): e7423. Available from: https://doi.org/10.7759/cureus.7423 DOI: https://doi.org/10.7759/cureus.7423

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res, 2020; 24: 91-98. Available from: https://doi.org/10.1016/j.jare.2020.03.005 DOI: https://doi.org/10.1016/j.jare.2020.03.005

Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids, 2021; 1866(2): 158849. Available from: https://doi.org/10.1016/j.bbalip.2020.158849 DOI: https://doi.org/10.1016/j.bbalip.2020.158849

CDC. Coronavirus Disease 2019 (COVID-19) Animais e COVID-19. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html

Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents, 2020; 55(3): 105924. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105924 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105924

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun, 2020; 109: 102433. Available from: https://doi.org/10.1016/j.jaut.2020.102433 DOI: https://doi.org/10.1016/j.jaut.2020.102433

Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab, 2020; 318(5): E736-E741. Available from: https://doi.org/10.1152/ajpendo.00124.2020 DOI: https://doi.org/10.1152/ajpendo.00124.2020

Organização Pan-Americana da Saúde. OPAS. Folha informativa – COVID-19 (doença causada pelo novo coronavírus). Abril de 2020. Available from: https://www.paho.org/

Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet, 2020; 395(10223): 470-473. Available from: https://doi.org/10.1016/S0140-6736(20)30185-9 DOI: https://doi.org/10.1016/S0140-6736(20)30185-9

Centers for Disease Control and Prevention. CDC. COVID Data Tracker. Atlanta, GA: US Department of Health and Human Services, CDC; 2022, June 27. Available from: https://covid.cdc.gov/covid-data-tracker

Brasil. Ministério da Saúde. Coronavírus//Brasil. COVID-19 Painel Coronavírus. Ministério da Saúde, 2022. Available from: https://covid.saude.gov.br/

Silva LA, Simonato LE, Ramos RR. Phylogeny and pathogenesis of SARS-CoV-2: a systematic study. Journal of Modern Medicinal Chemistry, 2020; 8: 49-55. Available from: https://doi.org/10.12970/2308-8044.2020.08.06 DOI: https://doi.org/10.12970/2308-8044.2020.08.06

Huang Y, Ling Q, Manyande A, Wu D, Xiang B. Brain imaging changes in patients recovered from COVID-19: a narrative review. Front Neurosci, 2022; 16: 855868. Available from: https://doi.org/10.3389/fnins.2022.855868 DOI: https://doi.org/10.3389/fnins.2022.855868

Ellul MA, Benjamin L, Singh B et al. Neurological associations of COVID-19. Lancet Neurol, 2020; 19: 767-783. Available from: https://doi.org/10.1016/S1474-4422(20)30221-0 DOI: https://doi.org/10.1016/S1474-4422(20)30221-0

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci, 2020; 11: 995-998. Available from: https://doi.org/10.1021/acschemneuro.0c00122 DOI: https://doi.org/10.1021/acschemneuro.0c00122

Das G, Mukherjee N, Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem Neurosci, 2020; 11: 1206-1209. Available from: https://doi.org/10.1021/acschemneuro.0c00201 DOI: https://doi.org/10.1021/acschemneuro.0c00201

Needham EJ, Chou SHY, Coles AJ, Menon DK. Neurological implications of COVID-19 infections. Neurocrit Care, 2020; 32(3): 667-671. Available from: http://doi.org/10.1007/s12028-020-00978-4 DOI: https://doi.org/10.1007/s12028-020-00978-4

Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med, 2020; 172(9): 577-582. Available from: https://doi.org/10.7326/M20-0504 DOI: https://doi.org/10.7326/M20-0504

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol, 2020; 20: 363-374. Available from: http://dx.doi.org/10.1038/s41577-020-0311-8 DOI: https://doi.org/10.1038/s41577-020-0311-8

Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol, 2020; 215: 108448. Available from: https://doi.org/10.1016/j.clim.2020.108448 DOI: https://doi.org/10.1016/j.clim.2020.108448

Croda JHR, Garcia LP. Resposta imediata da vigilância em saúde à epidemia da COVID-19. Epidemiol. Serv Saúde, 2020; 29: e2020002. Available from: https://doi.org/10.5123/S1679-49742020000100021 DOI: https://doi.org/10.5123/S1679-49742020000100021

Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther, 2020; 14: 58-60. Available from: https://doi.org/10.5582/ddt.2020.01012 DOI: https://doi.org/10.5582/ddt.2020.01012

China News Network. Li Lanjuan's team: arbidol and darunavir can effectively inhibit coronavirus. 2020. Available from: http://www.sd.chinanews.com/2/2020/0205/70145.html

Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci, 2017; 93(7): 449-463. Available from: https://doi.org/10.2183/pjab.93.027 DOI: https://doi.org/10.2183/pjab.93.027

Wang M, Cao R, Zhang L et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020; 30(3): 269-271. Available from: https://doi.org/10.1038/s41422-020-0282-0 DOI: https://doi.org/10.1038/s41422-020-0282-0

Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents, 2020; 55(4): 105932. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105932 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105932

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends, 2020; 14: 72-73. Available from: https://doi.org/10.5582/bst.2020.01047 DOI: https://doi.org/10.5582/bst.2020.01047

Liu J, Cao R, Xu M et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov, 2020; 6: 16. Available from: https://doi.org/10.1038/s41421-020-0156-0 DOI: https://doi.org/10.1038/s41421-020-0156-0

Gautret P, Lagier JC, Parola P et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020; 56: 105949. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105949 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106063

Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: a systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr, 2020; 14(3): 241-246. Available from: https://doi.org/10.1016/j.dsx.2020.03.011 DOI: https://doi.org/10.1016/j.dsx.2020.03.011

Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses, 2019; 12: 14. Available from: https://doi.org/10.3390/v12010014 DOI: https://doi.org/10.3390/v12010014

Pallanti S. Importance of SARS-CoV-2 anosmia: from phenomenology to neurobiology. Comprehens Psych, 2020; 100: 152184. Available from: https://doi.org/10.1016/j.comppsych.2020.152184 DOI: https://doi.org/10.1016/j.comppsych.2020.152184

Tunç A, Ünlübaş Y, Alemdar M, Akyüz E. Coexistence of COVID-19 and acute ischemic stroke report of four cases. J Clin Neurosci, 2020; 77: 227-9. Available from: https://doi.org/10.1016/j.jocn.2020.05.018 DOI: https://doi.org/10.1016/j.jocn.2020.05.018

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med, 2020; 26: 450-452. Available from: http://doi.org/10.1038/s41591-020-0820-9 DOI: https://doi.org/10.1038/s41591-020-0820-9

Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol, 2020; 77: 683-690. Available from: https://doi.org/10.1001/jamaneurol.2020.1127 DOI: https://doi.org/10.1001/jamaneurol.2020.1127

Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun, 2020; 87: 18-22. Available from: https://doi.org/10.1016/j.bbi.2020.03.031 DOI: https://doi.org/10.1016/j.bbi.2020.03.031

Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med, 2020; 382: 2268-2270. Available from: https://doi.org/10.1056/NEJMc2008597 DOI: https://doi.org/10.1056/NEJMc2008597

Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology, 2020; 296(2): E119-E120. Available from: https://doi.org/10.1148/radiol.2020201187 DOI: https://doi.org/10.1148/radiol.2020201187

Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol, 2004; 61: 1669-73. Available from: https://doi.org/10.1001/archneur.61.11.1669 DOI: https://doi.org/10.1001/archneur.61.11.1669

Baig (b) AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther, 2020; 26: 499-501. Available from: https://doi.org/10.1021/acschemneuro.0c00174 DOI: https://doi.org/10.1111/cns.13372

Kantonen J, Mahzabin S, Mäyränpää MI, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol, 2020; 30(6): 1012-1016. Available from: https://doi.org/10.1111/bpa.12889 DOI: https://doi.org/10.1111/bpa.12889

Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun, 2020; 88: 11-16. Available from: https://doi.org/10.1016/j.bbi.2020.05.037 DOI: https://doi.org/10.1016/j.bbi.2020.05.037

Zayet S, Ben Abdallah Y, Royer PY, Toko L, Gendrin V, Klopfenstein T. Encephalopathy in patients with COVID-19: "causality or coincidence?". J Med Virol, 2021; 93(2): 1193. Available from: https://doi.org/10.1002/jmv.26027 DOI: https://doi.org/10.1002/jmv.26027

Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol, 2014; 807: 75-96. Available from: https://doi.org/10.1007/978-81-322-1777-0_6 DOI: https://doi.org/10.1007/978-81-322-1777-0_6

Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med, 2016; 375(5): 497-498. Available from: https://doi.org/10.1056/NEJMc1509458 DOI: https://doi.org/10.1056/NEJMc1509458

Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics, 2004; 113: e73-6. Available from: https://doi.org/10.1542/peds.113.1.e73 DOI: https://doi.org/10.1542/peds.113.1.e73

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020; 8(4): 420-422. Available from: https://doi.org/10.1016/S2213-2600(20)30076-X DOI: https://doi.org/10.1016/S2213-2600(20)30076-X

Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis, 2020; 26(7): 1618-1620. Available from: https://doi.org/10.3201/eid2607.200445 DOI: https://doi.org/10.3201/eid2607.200445

Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol, 2020; 277(8): 2251-2261. Available from: https://doi.org/10.1007/s00405-020-05965-1 DOI: https://doi.org/10.1007/s00405-020-06024-5

Filatov A, Sharma P, Hindi F, Esponosa PS. Neurological complications of coronavirus (COVID-19): encephalopathy. Cureus, 2020; 12(2): e7352. Available from: https://doi.org/10.7759/cureus.7352 DOI: https://doi.org/10.7759/cureus.7352

Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020; 58(4): 711–712. Available from: https://doi.org/10.1016/j.jemermed.2020.04.004 DOI: https://doi.org/10.1016/j.jemermed.2020.04.004

Xinhua. Beijing hospital confirms nervous system infections by novel coronavirus. China.org.cn, 2020. Available from: http://www.xinhuanet.com/english/2020-03/05/c_138846529.htm

Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-1034. Available from: https://doi.org/10.1016/S0140-6736(20)30628-0 DOI: https://doi.org/10.1016/S0140-6736(20)30628-0

Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol, 2020; 19(5): 383-384. Available from: https://doi.org/10.1016/S1474-4422(20)30109-5 DOI: https://doi.org/10.1016/S1474-4422(20)30109-5

Li Y, Guo F, Cao Y, Li L, Guo Y. Insight into COVID-2019 for pediatricians. Pediatr Pulmonol, 2020; 55(5): E1-E4. Available from: https://doi.org/10.1002/ppul.24734 DOI: https://doi.org/10.1002/ppul.24734

Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol, 2020; 5(3): 279-284. Available from: https://doi.org/10.1136/svn-2020-000431 DOI: https://doi.org/10.1136/svn-2020-000431

Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol, 2020; 92(10): 2105-2013. Available from: http://dx.doi.org/10.1002/jmv.25987 DOI: https://doi.org/10.1002/jmv.25987

Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus: a perspective. Expert Rev Clin Immunol, 2020; 16(5): 465-470. Available from: http://dx.doi.org/10.1080/1744666X.2020.1750954 DOI: https://doi.org/10.1080/1744666X.2020.1750954

Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020; 126(12): 1671-1681. Available from: http://dx.doi.org/10.1161/CIRCRESAHA.120.317134 DOI: https://doi.org/10.1161/CIRCRESAHA.120.317134

Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol, 2020; 92(9): 1580-1586. Available from: https://doi.org/10.1002/jmv.25832 DOI: https://doi.org/10.1002/jmv.25832

Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med, 2020; 46(5): 854-887. Available from: http://dx.doi.org/10.1007/s00134-020-06022-5 DOI: https://doi.org/10.1007/s00134-020-06022-5

Brandão SCS, Godoi ETAM, Ramos JOX, Melo LMMP, Sarinho ESC. Severe COVID-19: understanding the role of immunity, endothelium, and coagulation in clinical practice. J Vasc Bras. 2020; 19: e20200131. https://doi.org/10.1590/1677-5449.200131 DOI: https://doi.org/10.1590/1677-5449.200131

Gandhi RT, Lynch JB, Del Rio C. Mild or moderate Covid-19. N Engl J Med, 2020; 29; 383(18): 1757-1766. Available from: http://dx.doi.org/10.1056/NEJMcp2009249 DOI: https://doi.org/10.1056/NEJMcp2009249

Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ, 2020; 369: m1966. Available from: http://dx.doi.org/10.1136/bmj.m1966 DOI: https://doi.org/10.1136/bmj.m1966

Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine. 2020; 57: 102833. Available from: http://dx.doi.org/10.1016/j.ebiom.2020.102833 DOI: https://doi.org/10.1016/j.ebiom.2020.102833

Suh J, Amato AA. Neuromuscular complications of coronavirus disease-19. Curr Opin Neurol, 2021; 34(5): 669-674. Available from: https://doi.org/10.1097/WCO.0000000000000970 DOI: https://doi.org/10.1097/WCO.0000000000000970

Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology, 2020; 94(22): 959-969. Available from: https://doi.org/10.1212/WNL.0000000000009566 DOI: https://doi.org/10.1212/WNL.0000000000009566

Whittaker A, Anson M, Harky A. Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand, 2020; 142: 14-22. Available from: https://doi.org/10.1111/ane.13266 DOI: https://doi.org/10.1111/ane.13266

Downloads

Published

2022-09-01

How to Cite

Toledo, J. P. F. E. de, Ferreira, L. A., Souza, L. A. de, Cavalcante, F. R. P., Rebucci, R. C. S., Silva, M. T. T. da, Santos, M. M., Santos, R. R. C. dos, Souza, H. G. P. de, Guimaraes, I. P. P., & Ramos, R. R. (2022). Neurological changes post-covid-19 infection: signs and symptoms that remain. International Journal for Innovation Education and Research, 10(9), 336-350. https://doi.org/10.31686/ijier.vol10.iss9.3914
Received 2022-08-14
Accepted 2022-08-31
Published 2022-09-01

Most read articles by the same author(s)

1 2 > >>