Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

The Characterisation of a Powder Metallurgically Manufactured TNM™ Titanium Aluminide Alloy Using Complimentary Quantitative Methods

Charakterisierung einer pulvermetallurgisch hergestellten TNM™-Titanaluminid-Legierung mittels komplementärer quantitativer Methoden
  • M. Schloffer , T. Schmoelzer , S. Mayer , E. Schwaighofer , G. Hawranek , F.-P. Schimansky , F. Pyczak and H. Clemens
From the journal Practical Metallography

Abstract

In order to be able to use intermetallic titanium aluminide in industrial applications, a quick and affordable method of quantitatively analysing their microstructures is required. In the presented work it was able to demonstrate on a powder metallurgical manufactured TNM™ alloy of nominal composition Ti-43.5Al-4Nb-1Mo-0.1B (at.%), that by electrolytic-polishing and colour etching a quick and cost effective quantitative microstructural analysis may be carried out via light-optical microscopic images. In doing so, the phase fractions and microstructural constituents of the various types of microstructures present are determined using complementary analysing techniques. Both light-optical and scanning electron microscopic images were captured from each of three different types of microstructures. These were then quantitatively evaluated using an image analysis program. The results were compared with those obtained from X-ray diffraction experiments. The possibilities and limits of the quantitative phase evaluation of light-optical microscopic images of colour etched microstructures are also explained and their relationship to the choice of parameters used for the colour etching and electro-polishing operations discussed.

Kurzfassung

Um intermetallische Titanaluminid-Legierungen industriell einsetzen zu können, werden unter anderem schnelle und kostengünstige quantitative Gefügeanalysen gefordert. In dieser Arbeit konnte an einer pulvermetallurgisch hergestellten TNM™-Legierung, welche eine nominelle Zusammensetzung von Ti-43,5Al-4Nb-1Mo-0,1B (in At.-%) aufweist, gezeigt werden, wie man durch elektrolytisches Polieren und Farbätzen eine rasche und kosteneffiziente quantitative Gefügeanalyse an lichtmikroskopischen Gefügebildern durchführen kann. Dabei wurden die Phasenanteile sowie Gefügebestandteile unterschiedlicher Gefügetypen mit komplementären Untersuchungsmethoden bestimmt. Hierzu wurden licht- und rasterelektronenmikroskopische Bilder von drei Gefügetypen mit Hilfe eines Bildanalyseprogramms quantitativ ausgewertet und die Ergebnisse mit Röntgenbeugungsexperimenten verglichen. Des Weiteren werden die Möglichkeiten und Grenzen der quantitativen Phasenauswertung an lichtmikroskopischen Aufnahmen von farbgeätzten Gefügen erörtert, sowie die Zusammenhänge mit der Parameterwahl beim Farbätzen und Elektropolieren diskutiert.


Translation: P. Tate

Martin Schloffer is a materials scientist, doing his Ph.D. thesis at the Department of Physical Metallurgy and Materials Testing at the Montanuniversitaet Leoben in Austria. He is focusing on the high-temperature properties of intermetallic titanium aluminides by studying the influence of microstructure on their creep and fracture behaviour.

Gerhard Hawranek was born 1968 in Austria. He began working at the Department of Physical Metallurgy and Materials Testing in 1989 and is working in the field of Scanning Electron Microscopy and materials characterization with EDS, WDS and EBSD.


References/Literatur

[1] Gerling, R.; Clemens, H.; Schimansky, F.P.: Advanced Engineering Materials6 (2004) 1) 233810.1002/adem.200310559Search in Google Scholar

[2] Clemens, H.: Berg- und Hüttenmännisches Monatsheft153 (2008) 9) 33734110.1007/s00501-008-0396-zSearch in Google Scholar

[3] Cha, L.; Scheu, C.; Clemens, H.; Chladil, H.F.; Dehm, G.; Gerling, R.; Bartels, A.: Intermetallics16 (2008) 7) 86887510.1016/j.intermet.2008.03.009Search in Google Scholar

[4] Wallgram, W.; Schmoelzer, T.; Cha, L.; Das, G.; Guether, V.; Clemens, H.: International Journal of Materials Research. 100 (2009), 1021103010.3139/146.110154Search in Google Scholar

[5] Seeger, J.; Klein, J.; Mecking, H.: Praktische Metallographie27 (1990), 23624110.1515/pm-1990-270504Search in Google Scholar

[6] McCusker, L.B.; VonDreele, R.B.; Cox, D.E.; Louer, D.; Scardi, P.: Journal of Applied Crystallography32 (1999), 365010.1107/S0021889898009856Search in Google Scholar

[7] Watson, I.J.; Liss, K.D.; Clemens, H.; Wallgram, W.; Schmoelzer, T.; Hansen, T.C.; Reid, M.: Advanced Engineering Materials7 (2009), 93293710.1002/adem.200900169Search in Google Scholar

Received: 2011-1-27
Accepted: 2011-4-19
Published Online: 2013-06-11
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/147.110138/html
Scroll to top button