Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 30, 2018

Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel

  • Agnieszka T. Krawczynska , Malgorzata Lewandowska and Anthony T. Fry

Abstract

In this paper, residual stress distribution is investigated by a novel X-ray cosα diffraction technique in a nanostructured austenitic stainless steel after hydrostatic extrusion processes. Hydrostatic extrusion performed at 20°C and with a total true strain of 2.3 leads to the creation of a nanostructure consisting of nanotwins and shear bands. The results reveal that the greatest compressive residual stresses of −1 GPa are found 3 mm from the surface of the nanostructured austenitic stainless steel. These compressive residual stresses restrict crack growth into the material, thereby preventing catastrophic failure.


*Correspondence address, Agnieszka Krawczyńska, PhD Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland, Tel.: +48222348455, Fax:+48222348514, E-mail: , Web: www.inmat.pw.edu.pl

References

[1] R.Z.Valiev: Nat. Mater.3 (2004) 511516. PMid:15286754; 10.1038/nmat1180Search in Google Scholar PubMed

[2] R.Z.Valiev, Y.Estrin, Z.Horita, T.Langdon, M.Zehetbauer, Y.Zhu: JOM68 (2016) 12161226. 10.1007/s11837-016-1820-6Search in Google Scholar

[3] M.Lewandowska, K.Kurzydlowski: J. Mater. Sci.43 (2008) 7299. 10.1007/s10853-008-2810-zSearch in Google Scholar

[4] A.Vorhauer, S.Kleber, R.Pippan: Mater. Sci. Eng.A 410–411 (2005) 281284. 10.1016/j.msea.2005.08.119Search in Google Scholar

[5] A.T.Krawczynska, T.Brynk, S.Gierlotka, E.Grzanka, S.Stelmakh, B.Pałosz, M.Lewandowska, K.J.Kurzydłowski: Mech. Mater.67 (2013) 2532. 10.1016/j.mechmat.2013.07.017Search in Google Scholar

[6] J.Budniak, M.Lewandowska, W.Pachla, M.Kulczyk, K.J.Kurzydłowski: Solid State Phenom.114 (2006) 5762. 10.4028/www.scientific.net/SSP.114.57Search in Google Scholar

[7] M.Pisarek, P.Kedzierzawski, T.Plocinski, M.Janik-Czachor, K.J.Kurzydlowski: Mater. Charact.59 (2008) 12921300. 10.1016/j.matchar.2007.11.002Search in Google Scholar

[8] D.Klassek, T.Suter, P.Schmutz, W.Pachla, M.Lewandowska, K.J.Kurzydlowski, Oliviervon Trzebiatowski: Solid State Phenom.114 (2006) 189195. 10.4028/www.scientific.net/SSP.114.189Search in Google Scholar

[9] G.A.Webster: Mater. Sci. Forum347–349 (2000) 111. 10.4028/www.scientific.net/MSF.347–349.1Search in Google Scholar

[10] K.Zhan, C.H.Jiang, V.Ji: Mater, Lett, 99 (2013) 6164. 10.1016/j.matlet.2012.08.147Search in Google Scholar

[11] I.V.Alexandrov, A.A.Dubravina, A.R.Kilmametov, V.U.Kazykhanov, R.Z.Valiev: Met. Mater. Int9 (2003) 151156. 10.1007/BF03027271Search in Google Scholar

[12] J.Mizera, Z.Pakiela, K.J.Kurzydlowski: Arch. Matall. Mater.50 (2005) 395402.Search in Google Scholar

[13] S.Taira, K.Tanaka, T.J.Yamasaki: Soc. Mater. Sci. Japan27 (1978) 251. 10.2472/jsms.27.251Search in Google Scholar

[14] K.Hiratsuka, T.Sasaki, K.Seki, Y.Hirose: International Centre for Diffraction Data.46 (2003) 617.Search in Google Scholar

[15] T.Miyazaki, Y.Maruyama, Y.Fujimoto, T.Sasaki: Powder Diffr.30 (2015) 250255. 10.1017/S0885715615000433Search in Google Scholar

[16] J.Ramirez-Rico, S.-Y.Lee, J.J.Ling, I.C.Noyan: J. Mater. Sci.51 (2016) 53435355. 10.1007/s10853-016-9837-3Search in Google Scholar

[17] T.Miyazaki, T.Sasaki: Int. J. Mater. Res.106 (2015) 10021004. 10.3139/146.111268Search in Google Scholar

[18] T.Miyazaki, T.Sasaki: Int. J. Mater. Res.106 (2015) 237241. 10.3139/146.111179Search in Google Scholar

[19] D.Delbergue, D.Texier, M.Lévesque, P.Bocher: Intern. Conf. Residual Stress 20162 (2016) 5560. 10.21741/9781945291173-10Search in Google Scholar

[20] W.Pachla, J.Skiba, M.Kulczyk, S.Przybysz, M.Przybysz: Mater. Sci. Eng.615 (2014) 116127. 10.1016/j.msea.2014.07.069Search in Google Scholar

[21] A.T.Krawczynska, W.Chrominski, E.Ura-Binczyk, M.Kulczyk, M.Lewandowska: Mater. Des.136 (2017) 3444. 10.1016/j.matdes.2017.09.050Search in Google Scholar

[22] A.S.Rocha, T.Strohaecker, T.Hirsch: Surf. Coat. Tech.165 (2003) 176185. 10.1016/S0257-8972(02)00768-5Search in Google Scholar

[23] N.Inoue, M.Nishihara: Hydrostatic Extrusion: Theory and Applications, Elsevier Applied Science Publishers LTD, New York (1985). 10.1007/978-94-009-4954-6Search in Google Scholar

[24] S.Midha: PhD thesis, Cold extruded rods: residual stresses and mechanical properties, Loughborough University, UK (1976).Search in Google Scholar

[25] Ch.Ye, A.Telang, A.S.Gill, S.Suslov, Y.Idell, K.Zweiacker, J.Wiezorek, Z.Zhou, D.Qian, S.Mannava, V.Vasudevan: Mat. Sci. Eng.613 (2014) 274288. 10.1016/j.msea.2014.06.114Search in Google Scholar

[26] P.K.Rai, V.Pandey, K.Chattopadhyay, L.K.Singhal, V.Singh: J. Mater. Eng. Perform23 (2014) 40554064. 10.1007/s11665-014-1180-8Search in Google Scholar

[27] A.T.Krawczynska, M.Lewandowska, K.J.Kurzydlowski: Solid State Phenom.140 (2008) 1738. 10.4028/www.scientific.net/SSP.140.173Search in Google Scholar

Received: 2017-12-28
Accepted: 2018-03-26
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.111672/html
Scroll to top button