Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2018

Hot channel calculation methodologies in case of VVER-1000/1200 reactors

Methode der Heißkanalberechnung für VVER-1000/1200-Reaktoren
  • I. Panka , Gy. Hegyi , A. Keresztúri , Cs. Maráczy and E. Temesvári
From the journal Kerntechnik

Abstract

In VVER-1000/1200 type reactors much higher and geometrically more complex assemblies are applied compared to the VVER-440 design. Additionally, assembly shrouds are not used in the improved reactor types. This implies that the existing sub-channel wise models and hot channel calculation methodologies used in the safety assessment of VVER-440 reactors have to be improved. For this purpose a full core thermal hydraulic model was developed. In the first part of the paper the new model and its connections with the reactor physics of KARATE-1200 code system are demonstrated with results regarding the sub-channel outlet temperature and DNBR. In the second part of the paper the hot channel calculation methodologies to be used in the transient safety analyses of VVER-1200 type reactors are discussed. The appropriate frame parameter concept concerning the limitation of the heating up of the coolant and the single closed sub-channel approach vs. the multi-channel approach are studied, as well.

Kurzfassung

In den Reaktoren des Typs VVER-1000/1200 werden wesentlich höhere und geometrisch komplexere Baugruppen eingesetzt als des Typs VVER-440. Außerdem werden bei den verbesserten Reaktortypen keine Montageblenden verwendet. Dies bedeutet, dass die bestehenden Subkanalmodelle und Heißkanalberechnungsmethoden, die bei der Sicherheitsbewertung von VVER-440-Reaktoren verwendet werden, verbessert werden müssen. Zu diesem Zweck wurde ein thermohydraulisches Vollkernmodell entwickelt. Im ersten Teil des Beitrags werden das erarbeitete neue Modell und seine Zusammenhänge mit der Reaktorphysik des KARATE-1200-Codesystems mit Ergebnissen bezüglich der Subkanalaustrittstemperatur und DNBR vorgestellt. Im zweiten Teil des Beitrags werden die Methoden der Heißkanalberechnung für die transienten Sicherheitsanalysen von Reaktoren des Typs VVER-1200 diskutiert. Auch das geeignete Rahmenparameter-Konzept zur Begrenzung der Erwärmung des Kühlmittels und der einkanalige geschlossene Subkanalansatz vs. der Mehrkanalansatz wird untersucht.


* E-mail:

References

1 http://www.mvmpaks2.hu/en/PaksII/TheFuture/NewUnits/Lapok/default.aspxSearch in Google Scholar

2 Mokhov, V.; Trunov, N.: VVER reactors: clean and reliable source of energy in the past and in the future. Proc. Int. Conf. on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, Vienna, Austria, October 27–30, 2009Search in Google Scholar

3 Fil, N. S.: VVER-1200 Reactor Plant and Safety Systems. Rosatom Seminar on Russian Nuclear Energy Technologies and Solutions, April 2–3, 2012, Johannesburg, Sandton Convention CenterSearch in Google Scholar

4 Speranski, F. A.: Monte Carlo model of the reactor VVER-1200 for the calculation of the albedo of the reflectors. Research Department of Nuclear Facilities Safety, Republic of Belarus, February 25, 2015 (in Russian) www.bsuir.by/m/12_120147_1_88217.pdfSearch in Google Scholar

5 Panka, I.; Keresztúri, A.: Hot Channel Calculation Methodologies In Case Of Gd Burnable Poison. Proceedings of the 18th Symposium of AER, Eger, Hungary, 2008Search in Google Scholar

6 Panka, I.; Telbisz, M.: Sensitivity analysis of hot channel calculation methods. Progress in Nuclear Energy49 (2007) 273610.1016/j.pnucene.2006.08.002Search in Google Scholar

7 Tóta, Á.; Keresztúri, A.; Panka, I.; Molnár, A.; Temesvári, E.: Investigations of the hot-channel calculation methodology in case of shroud-less assemblies, Kerntechnik79 (2014) 35135810.3139/124.110459Search in Google Scholar

8 Rowe, D. S.: COBRA IIIC: A Digital Computer Program for Steady State And Transient Thermal-Hydraulic Analysis Of Rod Bundle Nuclear Fuel Element. Battelle Pacific Northwest Laboratories Richland, Washington 99352, 197310.2172/4480166Search in Google Scholar

9 Hegedűs, Cs.; Hegyi, Gy.; Hordósy, G.; Keresztúri, A.; Makai, M.; Maráczy, Cs.; Telbisz, F.; Temesvári, E.; Vértes, P.: The KARATE Program System. Proc. PHYSOR 2002, Seoul, Korea, October 7–10, 2002Search in Google Scholar

10 Keresztúri, A.; Hegyi, Gy.; Korpás, L.; Maráczy, Cs.; Makai, M.; Telbisz, M.: General features and validation of the recent KARATE-440 code system. Int. J. Nuclear Energy Science and Technology5 (2010) 20723810.1504/IJNEST.2010.033476Search in Google Scholar

11 Temesvári, E.; Hegyi, Gy.; Hordósy, G.; Maráczy, Cs.: Solution of the “MIDICORE” VVER-1000 Core Periphery Power Distribution Benchmark by KARATE and MCNP. Proc. 21st Symposium of AER on VVER Reactor Physics and Reactor Safety, Dresden, Germany, 19–23 September 2011, pp. 221232, ISBN 978-963-372-646-4Search in Google Scholar

12 Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Panka, I.; Temesvári, E.; Hordósy, G.: Comprehensive Solution of the “MIDICORE” Benchmark by the KARATE and MCNP Code System, Proc. 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, Helsinki, Finland, 10–14 October 2016, pp. 8596, ISBN 978-963-7351-26-6Search in Google Scholar

13 Temesvári, E.; Brolly, A.; Hegyi, Gy.; Hordósy, G.; Maráczy, Cs.; Keresztúri, A.: Preliminary comparison of KARATE-1200 and MCNP fine mesh calculations, Proc. 27th Symposium of AER on VVER Reactor Physics and Reactor Safety, Munich, Germany, 17–20 October 2017, pp. 395412, ISBN 978-963-7351-28-0Search in Google Scholar

14 https://www.iaea.org/NuclearPower/Downloadable/aris/2013/36.VVER-1200%28V-491%29.pdfSearch in Google Scholar

15 Zuber, N.; Findlay, J. A.: Average Volumetric Concentration in Two-Phase Flow Systems. Trans. ASME, J. Heat Transfer87 (1965) 45346810.1115/1.3689137Search in Google Scholar

16 Maróti, L.: Heat Transfer in Partial Boiling. The 21st National Heat Transfer Conference, Seattle, ASME paper, HTD-vol. 27, 1983Search in Google Scholar

17 Martinelli, R. C.; Nelson, D. B.: Prediction of Pressure Drops During Forced Circulation Boiling of Water. Trans. ASME70 (1948)10.1115/1.4017819Search in Google Scholar

18 Bezrukov, Yu. A.; Astakhov, V.I.; Brantov, V.G.; Abramov, V.I.; Testov, I.N.; Logvinov, S.A.; Rassokhin, N.G.: Experimental investigation and statistical analysis of data on burnout in rod bundles for water-moderated water-cooled reactors. Teploenergetika23 (1976) 8082 (in Russian).Search in Google Scholar

19 Rajamäki, M.: TRAB, A Transient Analysis Program for BWR, Part 1. Principles. Report 45, Technical Research Centre of Finland, Nuclear Engineering Laboratory, Helsinki (1980) (p. 101 + app. p. 9)Search in Google Scholar

20 Räty, H.; Rajamäki, M.: TRAB: A Transient Analysis Program for BWR. Part 2: User's Manual. Research Notes 1232 (p. 105 + app. p. 46) Technical Research Center of Finland, Nuclear Engineering Laboratory, Helsinki (1991)Search in Google Scholar

21 Keresztúri, A.; Hegyi, Gy.; Maráczy, Cs.; Panka, I.; Telbisz, M.; Trosztel, I.; Hegedűs, Cs.: Development and validation of the three-dimensional dynamic code – KIKO3D. Annals of Nuclear Energy30 (2003) 9312010.1016/S0306-4549(02)00043-9Search in Google Scholar

22 Panka, I.; Keresztúri, A.; Hegedűs, Cs.: Numerical methods in the KIKO3D three-dimensional reactor dynamics code. Transport Theory and Statistical Physics36 (2007) 38141910.1080/00411450701468183Search in Google Scholar

23 Keresztúri, A.; Hegyi, Gy.; Maráczy, Cs.; Trosztel, I.; Austregesilo, H.; Cester, F.; Langenbuch, S.; Velkov, K.: The Coupled ATHLET-KIKO3D, The Neutronic and Thermohydraulic Models, Verification Results. User's Guide, Garching-Budapest, 1997Search in Google Scholar

24 Kliem, S.; Danilin, S.; Hämäläinen, A.; Hádek, J.; Keresztúri, A.; Siltanen, P.: Qualification of Coupled 3-D Neutron-Kinetic/Thermal-Hydraulic Code Systems by the Calculation of Main-Steam-Line-Break Benchmarks in a NPP with VVER-440 Reactor. Nuclear Science and Engineering157 (2007) 28029810.13182/NSE07-A2728Search in Google Scholar

Received: 2018-02-04
Published Online: 2018-08-31
Published in Print: 2018-08-27

© 2018, Carl Hanser Verlag, München

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.3139/124.110899/html
Scroll to top button