Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2014

Experimental study of flow inversion in MTR upward flow research reactors

Experimentelle Untersuchung der Strömungsumkehr bei Materialprüfungsreaktoren
  • A. Khedr , E. A. Abdel-Hadi , K. A. Talha and S. H. Abdel-Latif
From the journal Kerntechnik

Abstract

The core cooling of upward flow MTR pool type Research Reactor (RR) at the later stage of pump coast down is experimentally handled to clarify the effect of some operating parameters on RR core cooling. Therefore, a test rig is designed and built to simulate the core cooling loop at this stage. The core is simulated as two vertical channels, electrically heated, and extended between upper and lower plenums. Two elevated tanks filled with water are connected to the two plenums. The first one constitutes a left branch, connected to the lower plenum, and is electrically heated to simulate the core return pipe. The second one constitutes the right branch, connected to the upper plenum, and is cooled by refrigerant circuit to simulate the reactor pool. Channel coolant and wall temperatures at different power and branch temperatures are measured, registered and analyzed. The results show that at this stage of core cooling two cooling loops are established; an internal circulation loop between the channels dominated by the difference in channel's power and an external circulation loop between the branches dominated by the temperature difference between branches. Also, there is a double inversion in core flow, upward-downward-upward flow. This double inversion increases largely the channel's wall temperature. Complementary safety analysis to evaluate this phenomenon must be performed.

Kurzfassung

Die Kernkühlung bei Materialprüfungsreaktoren mit Wasserbecken wird bei auslaufender Pumpe experimentell behandelt, um den Effekt einiger Betriebsparameter auf die Kernkühlung des Forschungsreaktors zu klären. Deshalb wurde eine Testanlage entwickelt und gebaut, die den Kernkühlungskreislauf in diesem Stadium simuliert. Der Kern wird als zwei vertikale Kanäle simuliert, elektrisch erhitzt und zwischen oberem und unterem Plenum erweitert. Zwei erhöhte, mit Wasser gefüllte Tanks sind mit dem oberen und unteren Plenum verbunden. Der eine Tank stellt eine mit dem unteren Plenum verbundene linke Verzweigung dar und wird elektrisch erhitzt, um die Strömungsumkehr zu simulieren. Der andere Tank stellt eine mit dem oberen Plenum verbundene rechte Verzweigung dar und wird mit einem Kältekreislauf gekühlt um das Wasserbecken des Reaktors zu simulieren. Kühlmittel- und Wandtemperaturen der Kanäle werden bei verschiedenen Leistungen und Temperaturen in den Verzweigungen gemessen, registriert und analysiert. Die Ergebnisse zeigen, dass in diesem Stadium der Kernkühlung zwei Kühlschleifen eingeführt werden, eine interne und eine externe Schleife zwischen den Verzweigungen, die von der Temperaturdifferenz dazwischen beherrscht wird. Außerdem gibt es eine doppelte Inversion bei der Kernströmung, aufwärts-abwärts-aufwärts gerichtet. Durch diese doppelte Inversion erhöht sich die Wandtemperatur des Kanals. Eine abgestimmte Sicherheitsanalyse zur Bewertung dieser Phänomene muss durchgeführt werden.

References

1 IAEA: Research Reactor Core Conversion. Guidebook, IAEA-TECDOC 643, April 1992Search in Google Scholar

2 Smith, R. S.; Woodruff, W. L.: Thermal-Hydraulic Aspects of the Flow Inversion in a Research Reactor. International Meeting on Reduced Enrichment for Research and Test Reactors, November 3–6, 1986, Gatlinburg, Tennessee U.SSearch in Google Scholar

3 Emon, D. E.: Flow inversion transient associated with a loss of Primary pump power. Texas A &M University college station, Texas, Report number CNM-R-2 (Vol. 2)Search in Google Scholar

4 Cheng, Lap Y. et. al.: Flow Reversal and Thermal limit in a Heated Rectangular Channel. ASME HTD-Vol. 281, Natural Circulation Phenomena in Nuclear Reactor Systems, pp 5342, 1994Search in Google Scholar

5 Cheng, Lap Y.; Tichler, P. R.: Analysis of Flow Reversal Test. ASME/JSME Fourth International conference on Nuclear Engineering, ICONE-4, New Orleans Louisiana, March 1996Search in Google Scholar

6 Kazeminejad, H.: Thermal-hydraulic modeling of flow inversion in a research reactor. Annals of Nuclear Energy35 (2008) 1813181910.1016/j.anucene.2008.05.006Search in Google Scholar

7 Hainoun, A.; Ghazi, N. Mansour; Abdul-Moaiz, B.: Safety analysis of the IAEA reference research reactor during loss of flow accident using the code MERSAT: Nuclear Engineering and Design240 (2010) 1132113810.1016/j.nucengdes.2010.01.001Search in Google Scholar

8 Sudo, Y.; Kaminaga, M.; Minazoe, K.: Experimental study on the effects of channel gap size on mixed convection heat transfer characteristics in vertical rectangular channels heated from both sides. Nuclear Engineering and Design120 (1990) 13514610.1016/0029-5493(90)90368-8Search in Google Scholar

9 Beeckmans, A.: Summary of the studies carried out for the definition of the maximum allowed heat flux in the BR2 reactor. Proceeding of the international meeting on reduced enrichment for research and test reactors, November 3–6, 1986Search in Google Scholar

10 Yang, B. W.; Ouyang, W.: Dynamics and Developing of Natural Circulation Cooling from Vertical Up flow and down flow Conditions. The 4th international Topical Meeting on Nuclear thermal hydraulics, operation and safety, April 1994, Columbia UniversitySearch in Google Scholar

11 Khater, H. A.; Talha, K. A.; El-Fara, A. M.: Experimental Validation of a Thermal Hydraulic Model for ETRR-2 During Loss of OFF-Site Power. 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Pennsylvania, Sep. 30 – Oct. 4, 2007Search in Google Scholar

12 Salah-El-Din El-Morshedy : Prediction, analysis and solution of the flow inversion phenomenon in a typical MTR-reactor with upward core cooling: Nuclear Engineering and Design241 (2011) 22623510.1016/j.nucengdes.2010.10.006Search in Google Scholar

Received: 2014-03-14
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.110425/html
Scroll to top button