Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2014

Hamming generalized corrector for reactivity calculation

Der generalisierte Hamming-Code als Korrektor für Reaktivitätsberechnungen
  • D. Suescún-Díaz , M. C. Ibarguen-Gonzalez and J. H. Figueroa-Jiménez
From the journal Kerntechnik

Abstract

This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h5, where h is the time step.

Kurzfassung

In dieser Arbeit wird der generalisierte Hamming-Code als Korrektor für die numerische Lösung der Differentialgleichung der Konzentration der Vorläuferkerne verzögerter Neutronen aus den punktkinetischen Gleichungen für Reaktivitätsberechnungen verwendet. Eine Studie wurde durchgeführt für eine Reihe von Korrektoren mit ihren entspechenden Modifiern unter Berechnung verschiedener Zeitschritte. Bessere Ergebnisse wurden für einige Korrektoren mit anderen Methoden erhalten. Die Reaktivität kann mit einer Genauigkeit der Ordnung h5 berechnet werden, wobei h der Zeitschritt ist.


* Corresponding author: E-mail address:

References

1 Shimazu, Y.; Nakano, Y.; Tahara, Y., et al.: Development of a compact digital reactivity meter and reactor physics data processor. Nucl. Technol.77 (1987) 247Search in Google Scholar

2 Ansari, S. A.: Development of on-line reactivity meter for nuclear reactors. IEEE Trans. Nucl. Sci.38 (1991) 94610.1109/23.83857Search in Google Scholar

3 Binney, S. E.; Bakir, A. I. M.: Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl. Technol.85 (1989) 12Search in Google Scholar

4 Hoogenboom, J. E.; Van Der Sluijs, A. R.: Neutron source strength determination for on-line reactivity measurements. Ann. Nucl. Energy.15 (1988) 55310.1016/0306-4549(88)90059-XSearch in Google Scholar

5 Suescún, D. D.; Senra, A. M.; Carvalho Da Silva, F.: Calculation of reactivity using a finite impulse response filter. Ann. Nucl. Energy35 (2008) 47210.1016/j.anucene.2007.07.002Search in Google Scholar

6 Suescún, D. D.; Senra, A. M.; Carvalho Da Silva, F.: Formulation for the calculation of reactivity without nuclear power history. J. Nucl. Sci. Technol.44 (2007) 114910.1080/18811248.2007.9711358Search in Google Scholar

7 Suescún, D. D.; Senra, A. M.: Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik.75 (2010) 21010.3139/124.110063Search in Google Scholar

8 Suescún, D. D.; Flórez, J. F. O.; Rodriguez, J. A. S.: Hamming method for solving the delayed neutron precursor concentration for reactivity calculation. Ann. Nucl. Energy.42 (2012) 4710.1016/j.anucene.2011.12.019Search in Google Scholar

9 Malmir, H.; Vosoughi, N.: On-line reactivity calculation using Lagrange method. Ann. Nucl. Energy.62 (2013) 46310.1016/j.anucene.2013.07.006Search in Google Scholar

10 Duderstadt, J. J.; Hamilton, L.J.: Nuclear Reactor Analysis, second ed. John Wiley & Sons Inc., New York, 1976Search in Google Scholar

Received: 2014-02-25
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.110423/html
Scroll to top button