Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2014

One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique

Synthese von Pt-reduziertem Graphenoxid auf der Basis hochenergetischer Strahlungsverfahren
  • Xuqiang Liu , Shubin Jiang , Wei Huang and Hongtao Song
From the journal Kerntechnik

Abstract

In this paper, we introduce a novel 60Co-ray-irradiation-based one-step synthesis method of Pt-reduced graphene oxide composites (Pt-RGO) in acid aqueous solution. The compositional distribution of the particles in the samples was characterized by transmission electron microscopy. The structure and composition of the nanocomposite has been determined with a scanning electron microscope (SEM) equipped with an energy dispersion X-ray (EDS) analyzer. Surface enhanced Raman scattering (SERS) of graphene deposited by the Pt nanoparticles were investigated with the 514.5 nm excitation. It was found that small-sized and highly-dispersed Pt nanoparticles could easily grow on the RGO surface under acidic conditions. In addition, the obtained homogeneous dispersions exhibit long-term stability, which will facilitate the production of homogeneous composites.

Kurzfassung

In der vorliegenden Arbeit wird eine neue Methode für die Synthese von Pt-reduziertem Graphenoxid (Pt-RGO) in saurer, wässriger Lösung vorgestellt. Die zusammengesetzte Verteilung der Teilchen in der Probe wurde mit Hilfe der Transmissionselektronenmikroskopie bestimmt. Struktur und Zusammensetzung der Nanoverbundwerkstoffe (Nanokomposite) wurde mit einem Rasterelektronenmikroskop, ausgestattet mit einem energiedispersiven Röntgenspektrometer bestimmt. Oberflächen-verstärkte Raman-Streuung des durch die Pt-Nanopartikel abgelagerten Graphens wurde mit Hilfe der 514,5 nm Anregung untersucht. Dabei stellte sich heraus, dass kleine und hochdispersive Pt-Nanopartikel unter sauren Bedingungen auf der RGO-Oberfläche leicht wachsen. Zusätzlich erwiesen sich die erhaltenen homogenen Dispersionen als langfristig stabil, was die Herstellung homogener Komposite erleichtern wird.


* Corresponding author: E-mail:

References

1 Novoselov, K. S.; Geim, A. K.; Morozov, S. V. et al.: Electric field effect in atomically thin carbon films. Science306 (2004) 66610.1126/science.1102896Search in Google Scholar

2 Bai, H.; Li, C.; Shi, G. Q.: Functional Composite Materials Based on Chemically Converted Graphene. Adv Mater23 (2011) 108910.1002/adma.201003753Search in Google Scholar

3 Sun, Y. Q.; Wu, Q. O.; Shi, G. Q.: Graphene based new energy materials. Energy Environ Sci4 (2011) 111310.1039/c0ee00683aSearch in Google Scholar

4 Stankovich, S.; Dikin, D. A.; Dommett, G. H. B. et al.: Graphene-based composite materials. Nature442 (2006) 28210.1038/nature04969Search in Google Scholar

5 Zhang, X. R.; Li, S. G., Jin, X. et al.: Chem Commun47 (2011) 492910.1039/c1cc10830aSearch in Google Scholar

6 Liang, Y. Y.; Li, Y. G.; Wang, H. L. et al.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater10 (2011) 78010.1038/nmat3087Search in Google Scholar

7 Gao, E. P.; Wang, W. Z.; Shang, M. et al.: Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Phys Chem Chem Phys13 (2011) 288710.1039/c0cp01749cSearch in Google Scholar

8 Wang, B.; Park, J.; Wang, C. Y. et al.: Mn3O4nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta55 (2010) 681210.1016/j.electacta.2010.05.086Search in Google Scholar

9 Chang, K.; Cheng, W. X.: l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano5 (2011) 472010.1021/nn200659wSearch in Google Scholar

10 Jiang, Z. X.; Wang, J. J.; Meng, L. H. et al.: A highly efficient chemical sensor material for ethanol/graphene nanocomposites fabricated from graphene oxide. Chem Commun47 (2011) 635010.1039/c1cc11711dSearch in Google Scholar

11 Voorhees, P. W.: The theory of Ostwald ripening. J Statist Phys38 (1985) 23110.1007/BF01017860Search in Google Scholar

12 Wang, K.; Ruan, J.; Song, H. et al.: Biocompatibility of Graphene Oxide Nanoscale Res Lett6 (2011) 8Search in Google Scholar

13 Das, M. R.; Sarma, R. K.; Saikia, R. et al.: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B83 (2011) 1610.1016/j.colsurfb.2010.10.033Search in Google Scholar

14 Fu, C. P.; Kuang, Y. F.; Huang, Z. Y. et al.: Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chem Phys Lett499 (2010) 25010.1016/j.cplett.2010.09.055Search in Google Scholar

15 Jasuja, K.; Linn, J.; Melton, S. et al.: Microwave-reduced uncapped metal nanoparticles on graphene: Tuning catalytic, electrical, and Raman properties. J Phys Chem Lett1 (2010) 185310.1021/jz100580xSearch in Google Scholar

16 Shen, J. F.; Shi, M.; Li, N. et al.: Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res3 (2010) 33910.1007/s12274-010-1037-xSearch in Google Scholar

17 Shi, M.; Shen, J. F.; Ma, H. W. et al.: Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids and Surfaces, A: Physicochemical and Engineering Aspects405 (2012) 303710.1016/j.colsurfa.2012.04.031Search in Google Scholar

Received: 2014-01-31
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.110416/html
Scroll to top button