Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 6, 2013

Effects of spectral shifting in an inertial confinement fusion system

Spektrale Effekte in einem Trägheitsfusionssystem
  • S. Şahin , H. M. Şahin , K. Yildiz and A. Acir
From the journal Kerntechnik

Abstract

The main objective is to study the effects of spectral shifting in an inertial confinement system for kT/shot energy regime on the breeding performance for tritium and for high quality fissile fuel. A protective liquid droplet jet zone of 2 m thickness is used as coolant, energy carrier, and breeder. Flibe as the main constituent is mixed with increased mole-fractions of heavy metal salt (ThF4 or UF4) starting by 2 moles% up to 12 moles%. Spectrum softening within the inertial confinement system reduces the tritium production ratio (TBR) in the protective coolant to a lower level than unity. However, additional tritium production in the 6Li2DT zone of the system increases TBR to values above unity and allows a continuous operation of the power plant with a self-sustained fusion fuel supply. By modest fusion fuel burn efficiencies (40 to 60 %) and with a few mol.% of heavy metal salt in the coolant in form of ThF4 or % UF4, a satisfactory TBR of > 1.05 can be realized. In addition to that, excess fissile fuel of extremely high isotopic purity with a rate of ∼ 1000 kg/year of 233U or 239Pu can be produced. Radiation damage through atomic displacements and helium gas production after a plant operation period of 30 years is very low, namely dpa < 1 and He < 2 ppm, respectively.

Kurzfassung

Zweck der Effekte im Brutprozess eines Trägheitssystems mit einer Energiefreisetzung im kt/Schuss-Bereich. Ein 2 m dicker und flüssiger „Jet-Vorhang“ wird gleichzeitig als Kühlmittel, Energieträger und Brutmantel benutzt. „Flibe“ ist dabei die Hauptsubstanz und wird mit 2–12 Molprozent ThF4 oder UF4 vermischt. Wegen der Spektrumserweichung im Vorhang sinkt zunächst die Brutrate, aber zusätzliches Tritium wird in der 6Li2DT Pelletzone erzeugt, so dass die totale Brutrate über eins für einen sich selbst erhaltenden Prozess steigt. Durch moderate Fusionsbrände (40–60 %) und einige Molprozent ThF4 oder UF4 im Kühlmitttel wird eine hinreichende Brutrate von > 1.05 erzielt. Dazu wird isotopenreines spaltbares Material mit einer Rate von ∼ 1000 kg/Jahr an 233U oder 239Pu produziert. Die Strahlenschäden durch Gitterstörungen und He-Produktion sind nach 30 Jahren sehr klein, nämlich dpa <1 bzw. He <2 ppm.


E-mail:

References

1 Call, C. J.; Moir, R. W.: A Novel Fusion Power Concept Based on Molten-Salt Technology: PACER Revisted. Nucl. Sci. Eng.104 (1990) 364.Search in Google Scholar

2 DOE: Engineering with Nuclear Explosives. Proc. 3rd Plowshare Symp., TID-7695, U.S. Department of Energy/Office of Scientific and Technical Information, Oak Ridge, Tennessee, (1964).Search in Google Scholar

3 Hubbard, H. W.: Project PACER Final Report, RDA-TR-4100-003, R & D Associates, (1974).Search in Google Scholar

4 Hammond, R. P.: Practical Fusion Power. Mech. Eng.104 (1982) 34.Search in Google Scholar

5 Moir, R. W.: PACER Revisted. Fusion Technology15 (1989) 1114.Search in Google Scholar

6 Seifritz, W.: PACER: A Grand Design for Fusion Power. Fusion4 (1980) 22.Search in Google Scholar

7 Szöke, A.; Moir, R. W.: A Practical Route to Fusion Power. Technol. Rev.94 (1991) 20.Search in Google Scholar

8 Szöke, A.; Moir, R. W.: A Realistic, Gradual and Economical Approach to Fusion Power. Fusion Technology20 (1991) 1012.Search in Google Scholar

9 Teller, E.; Talley, W.; Higgins, G.: Constructive Uses of Nuclear ExplosivesMcGraw-Hill Book Company, New York (1968).Search in Google Scholar

10 Şahin, S.; Yalçin, Ş.; Yildiz, K.: Fissile Fuel Breeding with Peaceful Nuclear Explosives. Fusion Engineering and Design65 (2003) 643.10.1016/S0920-3796(03)00397-1Search in Google Scholar

11 Şahin, S.; Moir, R. W.; Ünalan, S.: Neutronic Investigation of A Power Plant Using Peaceful Nuclear Explosives. Fusion Technology26 (1994) 1311.Search in Google Scholar

12 Petrie, L. M.: Scale System Driver, NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, (May19, 2004).Search in Google Scholar

13 Greene, N. M.; Petrie, L. M.: XSDRNPM, A One-Dimensional Discrete-Ordinates Code For Transport Analysis. NUREG/CR-0200, Revision 7, 2, Section F3, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, (2004).Search in Google Scholar

14 Jordan, W. C.; Bowman, S. M.; Hollenbach, D. F.: Scale Cross-Section Libraries. NUREG/CR-0200, Revision 7, 3, section M4, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, (2004).Search in Google Scholar

15 Greene, N. M.: BONAMI, Resonance Self-Shielding by the Bondarenko Method: NUREG/CR-0200, Revision 6,2, section F1, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, (2004).Search in Google Scholar

16 Greene, N. M.; Petrie, L. M.; Westfall, R. M.: NITAWL-III, Scale System Module For Performing Resonance Shielding and Working Library Production. NUREG/CR-0200, Revision 6, 2, Section F2, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, (2004).Search in Google Scholar

17 Landers, N. F.; Petrie, L. M.; Hollenbach, D. F.: “CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences”, NUREG/CR-0200, Revision 6, 1, Section C4, ORNL/NUREG/CSD-2/V1/R7, Oak Ridge National Laboratory, (2004).Search in Google Scholar

18 Şahin, S.: The 240Pu Content of Commercial Produced Plutonium and the Criticality of Fast Assemblies. Atomkernenergie27 (1976) 23.Search in Google Scholar

19 Şahin, S.: The Effects of 240Pu on Neutron Lifetime in Nuclear Explosives Annals of Nuclear Energy5 (1978) 55.Search in Google Scholar

20 Şahin, S.; Yalçin, Ş.: Adjoint Weighted Neutron Lifetime in Nuclear Explosives. Atomkernenergie/Kerntechnik36 (1980) 141.Search in Google Scholar

21 Şahin, S., Ligou, J.: The Effect of the Spontaneous Fission of 240Pu on the Energy Release in a Nuclear Explosive. Nuclear Technology50 (1980b) 88.10.13182/NT80-A17072Search in Google Scholar

22 Şahin, S.; Calinon, R.: Criticality of Curium Assemblies. Atomkernenergie/Kerntechnik46 (1985) 45.Search in Google Scholar

23 Şahin, S.; Sözen, A.: Criticality Calculations for Spherical Pu-239 Assemblies. Journal of Institute Science Technology, Gazi University, 4(1) (1991) 94.Search in Google Scholar

24 Şahin, S., Erişen, A.; Yalçin, Ş.; Selvi, S.: Investigation of the Protection Possibilities Against Enhanced Radiation Warhead. Atomkernenergie/Kerntechnik35 (1980) 175.Search in Google Scholar

25 Şahin, S.; Kumar, A.: The Effects of Spectrum Softening within the ERW on the Biological Dose. Atomkernenergie/Kerntechnik45 (1984) 117.Search in Google Scholar

26 Şahin, S.; Gsponer, A.: Protection Factors of Modern Armored Tanks Against Enhanced Radiation and Fission Nuclear Warheads. Atomkernenergie/Kerntechnik46 (1985) 278.Search in Google Scholar

27 Şahin, S.; Kumar, A.: Assessment Studies of the Biological Effects of the ERW. Transactions of the American Nuclear Society 1982. International Conference, 43, 635, Washington, D C. (1982).Search in Google Scholar

28 Şahin, S.: Protection Against Neutron Bomb Radiation. Transactions of the American Nuclear Society Winter Meeting, 33, 677, San Francisco, California (11–16 Nov. 1979).Search in Google Scholar

29 Şahin, S.: Examination of the Radiation Protection Capability of Different Types of Battle Tanks Against Neutron Bomb. Bulletin of the Technical University of Istanbul40 (1987) 315.Search in Google Scholar

30 Winterberg, F.: The MIRV Concept and the Neutron Bomb. Atomkernenergie36(3) (1980) 225.Search in Google Scholar

31 Şahin, S.; Şarer, B.: Assesment of the Neutron Leakage Spectrum of an Enhanced Radiation Warhead for Application as Peaceful Nuclear Explosive. Kerntechnik58 (1993) 295.Search in Google Scholar

32 Hütte, I.: Des Ingenieurs Taschenbuch, Berlin: Wilhelm Ernst & Sohn (1955).Search in Google Scholar

33 Şahin, S.; Moir, R. W.; Ünalan, S.: Neutronic Investigation of a Power Plant Using Peaceful Nuclear Explosives. American Nuclear Society Embedded Topical Meeting, 11th Topical Meeting on the Technology of Fusion Energy, Proceedings of the Abstracts, p. 393, New Orleans, Louisiana (19–23 June 1994).Search in Google Scholar

34 Şahin, S.; Moir, R. W.; Sahinaslan, A.; Şahin, H. M.: Radiation Damage in Liquid-Protected First Wall Materials for IFE-Reactors. Fusion Technology30 (1996) 1027.Search in Google Scholar

35 Şahin, S.; Şahinaslan, A.; Kaya, M.; Yilmaz, S.: Radiation Damage in Liquid-Protected First-Wall Materials for MFEReactors. Transactions of the American Nuclear Society 1997 Winter Meeting, 77, 158, Albuquerque (16–20 Nov. 1997).Search in Google Scholar

36 Lee, J. D.: Waste Disposal Assessment of HYLIFE-II Structure. Fusion Technology26 (1994) 74.Search in Google Scholar

37 Şahin, S.; Baltacioğlu, E.; Yapici, H.: Potential of a Catalyzed Fusion Driven Hybrid Reactor for the Regeneration of CANDU Spent Fuel. Fusion Technology20 (1991) 26.Search in Google Scholar

38 Şahin, S.; Yapici, H.; Bayrak, M.: Spent Mixed Oxide Fuel Rejuvenation in Fusion Breeders. Fusion Engineering and Design47 (1999) 9.10.1016/S0920-3796(99)00066-6Search in Google Scholar

39 Şahin, S.; Yapici, H.; Şahin, N.: Neutronic Performance of Proliferation Hardened Thorium Fusion Breeders. Fusion Engineering and Design54 (2001) 63.10.1016/S0920-3796(00)00107-1Search in Google Scholar

40 Şahin, S.; Şahin, H. M.; Sözen, A.; Bayrak, M.: Power Flattenning and Minor Actinide Burning in a Thorium Fusion Breeder. Energy Conversion and Management43 (2002) 799815.10.1016/S0196-8904(01)00077-2Search in Google Scholar

41 Şahin, S.; Übeyli, M.: LWR spent fuel transmutation in a high power density fusion reactor. Annals of Nuclear Energy31 (2004) 871.10.1016/j.anucene.2003.11.003Search in Google Scholar

42 DOE: Licensing Requirements for Land Disposal of Radioactive Waste. Code of Federal Regulations, Title 10, Part 61 (1982).Search in Google Scholar

43 Şahin, S.: Physics of the Fusion-Fission (Hybrid) Reactors 8th International Summer College on Physics and Contemporary Needs, Islamabad, Pakistan (23 July–11 August 1983) Invited paper.Search in Google Scholar

44 Şahin, S.; Şahin, H. M.; Yildiz, K.: Investigation of the Effects of the Resonance Absorption in a Fusion Breeder Blanket. Annals of Nuclear Energy29 (2002) 1641.10.1016/S0306-4549(02)00004-XSearch in Google Scholar

45 Moir, R. W.: HYLIFE-II, A Molten-Salt Inertial Fusion Energy Power Plant Design-Final Report: Fusion Technology25 (1994) 5.Search in Google Scholar

46 Smith, D. L.: Blanket Comparison and Selection Study-Final Report. ANL/FPP-84-1, Argonne National Laboratory (1984).Search in Google Scholar

48 Blink, A.: High-Yield Lithium-Injection Fusion-Energy (HYLIFE) Reactor. UCRL-53559, (Editors: K. L.Essary, K. E.Lewis), Lawrence Livermore National Laboratory (1985).10.2172/6124368Search in Google Scholar

49 Duderstad, J. J.; Moses, G. A.: Inertial Confinement Fusion. John Willey & Sons, New York (1982) p. 315.Search in Google Scholar

50 Perlado, M.; Guinan, M. W.; Abe, K.: Radiation Damage in Structural Materials. Energy From Inertial Fusion, International Atomic Energy Agency, p. 272, Vienna (1995).Search in Google Scholar

Received: 2004-12-6
Published Online: 2013-05-06
Published in Print: 2005-08-01

© 2005, Carl Hanser Verlag, München

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.100251/html
Scroll to top button