Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 30, 2019

Effect of austenitizing temperature on the microstructure evolution and properties of Cu-bearing CADI

  • Rong Nan , Hanguang Fu , Penghui Yang , Jian Lin and Yongping Lei
From the journal Materials Testing

Abstract

In the present study, the authors investigated the effect of the austenitizing temperature (860 to 1020 °C) on the microstructure evolution, hardness, wear resistance and corrosion resistance of Cu-bearing carbidic austempered ductile iron (CADI) by means of an optical microscope (OM), a scanning electron microscope (SEM), a Rockwell hardness tester, a microhardness tester, an X-ray diffractometer (XRD), a block-on-ring wear testing machine and electrochemical tester. The results show that with an increase in the austenitizing temperature, the amount of acicular ferrite decreases, size expands, and the volume fraction of high-carbon austenite increases gradually as does carbon content. Part of the carbide dissolves into the matrix, and the amount is significantly reduced. The hardness of Cu-bearing CADI first increases and subsequently decreases, and the hardness is highest at 940 °C. With an increase in austenitizing temperature, the wear loss of Cu-bearing decreases and its wear resistance increases. When the austenitizing temperature is 940 °C, wear loss is lowest and wear resistance is optimal. Electrochemical corrosion experiments show that as the austenitizing temperature increases, the corrosion potential of Cu-bearing CADI is slightly improved, the corrosion current density is gradually reduced, and the corrosion resistance of Cu-bearing CADI is improved. Considered comprehensively, the austenitizing temperature of Cu-bearing CADI should be determined to be 940 °C.


Correspondence Address, Prof. Dr. Hanguang Fu, School of Materials Science and Engineering, Beijing University of Technology, Number 100, Pingle Garden, Chaoyang District, Beijing 100124, P. R. China, E-mail:

Rong Nan, born in 1992, is a Master's candidate at the Beijing University of Technology, China. He obtained his Bachelor's degree at the School of Materials Science and Engineering at Chang'sn University, Xi‘an, China in 2017. His research interests mainly focus on wear-resistant alloy materials.

Prof. Dr. Hanguang Fu, born in 1964, is a Professor at the Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'sn Jiaotong University, Xi‘an, China, in 2004. His research interests mainly focus on solidification control. He has published over 240 technical papers and holds more than 120 invention patents in China.

Penghui Yang, born in 1992, is a Doctoral candidate at the Beijing University of Technology, China. He obtained his Master's degree at the School of Materials Science and Engineering at Jiamusi University, Jiamusi, China, in 2017. His research interests mainly focus on wear-resistant alloy materials.

Dr. Jian Lin, born in 1979, is an Associate Professor at the Beijing University of Technology, P. R. China. He obtained his PhD at the Department of Mechanical Engineering, Tsinghua University, Beijing, China, in 2006. His research interests mainly focus on the joining method of steel to aluminum and welding residual stress analysis. He has published over 50 technical papers.

Prof. Dr. Yongping Lei, born in 1957, is a Professor at the Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'sn Jiaotong University, Xi'sn, China, in 1994. His research interests mainly focus on the development of lead-free solder paste, the reliability of solder joints and welding. He has published over 120 technical papers and holds more than 80 invention patents in China.


References

1 S. K.Putatunda, S.Kesani, R.Tackett, G.Lawes: Development of austenite free ADI (austempered ductile cast iron), Mater. Sci. Eng. A435 (2006), No. 11, pp. 11212210.1016/j.msea.2006.07.051Search in Google Scholar

2 G. J.Alexander, T.Babette: Impact of molybdenum on heat-treatment and microstructure of ADI, Materials Science Forum925 (2018), pp. 18819510.4028/www.scientific.net/msf.925.188Search in Google Scholar

3 S.Solic, M.Godec, Z.Schauperl, C.Donik: Improvement in abrasion wear resistance and microstructural changes with deep cryogenic treatment of austempered ductile cast iron (ADI), Metall. Mater. Trans10 (2016), No. 47, pp. 5058507410.1007/s11661-016-3659-4Search in Google Scholar

4 G. L.Shi, S. H.Wu, X. H.Guo, X.Huang: Research on the effective rules for the impact toughness and hardness of austempered ductile iron (ADI) by austempering parameters, Applied Mechanics and Materials488 (2014), pp. 3810.4028/www.scientific.net/amm.488-489.3Search in Google Scholar

5 B.Stokes, N.Gao, P. A. S.Reed: Effects of graphite nodules on crack growth behaviour of austempered ductile iron, Mater Sci Eng A445 (2007), No. 6, pp. 37438510.1016/j.msea.2006.09.058Search in Google Scholar

6 V.Dakre, D. R.Peshwe, S. U.Pathak, A.Likhite: Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron, Int J Min Met Mater25 (2018), No. 7, pp. 77077810.1007/s12613-018-1625-4Search in Google Scholar

7 Y. C.Peng, H. J.Jin, J. H.Liu, G. L.Li: Influence of cooling rate on the microstructure and properties of a new wear resistant carbidic austempered ductile iron (CADI), Mater. Charact72 (2012), pp. 535810.1016/j.matchar.2012.07.006Search in Google Scholar

8 S.Laino, J. A.Sikora, R. C.Dommarco: Influence of chemical composition and solidification rate on the abrasion and impact properties of CADI, ISIJ Int49 (2009), No. 8, pp. 1239124510.2355/isijinternational.49.1239Search in Google Scholar

9 S.Laino, J. A.Sikora, R. C.Dommarco: Advances in the development of carbidic ADI, Key Engineering Materials457 (2010), pp. 18719210.4028/www.scientific.net/KEM.457.187Search in Google Scholar

10 M.Bahmani, R.Elliott, N.Varahram: The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron, Journal of Materials Science32 (1997), No. 20, pp. 5383538810.1023/A:1018631314765Search in Google Scholar

11 Y. C.Peng, H. J.Jin, J. H.Liu, G. L.Li: Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron, Materials Science and Engineering A529 (2011), pp. 32132510.1016/j.msea.2011.09.034Search in Google Scholar

12 U.Şeker, İ.Çiftçi, H.Hasirci: The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron, Materials & Design24 (2003), No. 1, pp. 475110.1016/S0261-3069(02)00081-XSearch in Google Scholar

13 S.Laino, J. A.Sikora, R. C.Dommarco: Development of wear resistant carbidic austempered ductile iron (CADI), Wear265 (2008), No. 1, pp. 1710.1016/j.wear.2007.08.013Search in Google Scholar

14 Ch. F.Han, Y. F.Sun, Y.Wu, Y. H.Ma: Effects of vanadium and austempering temperature on microstructure and properties of CADI, Metallography Microstructure & Analysis4 (2015), No. 3, pp. 13514510.1007/s13632-015-0197-1Search in Google Scholar

15 U.Batra, S.Ray, S. R.Prabhakar: Austempering and austempered ductile iron microstructure in copper alloyed ductile iron, Journal of Materials Engineering & Performance12 (2003), No. 4, pp. 42642910.1361/105994903770342962Search in Google Scholar

16 S. P.Mahadik, M. S.Harne, V. B.Raka: Study on effect of austempering temperature and time on the corrosion resistance of carbidic austempered ductile iron (CADI) material, International Journal for Scientific Research & Development13 (2017), No. 1, pp. 23424010.29070/JASTSearch in Google Scholar

17 C. H.Hsu, K. T.Lin: A study on microstructure and toughness of copper alloyed and austempered ductile irons, Materials Science & Engineering A528 (2011), No. 18, pp. 5706571210.1016/j.msea.2011.04.035Search in Google Scholar

18 C. H.Hsu, M. L.Chen: Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5 % sodium chloride, Corrosion Science52 (2010), No. 9, pp. 2945294910.1016/j.corsci.2010.05.006Search in Google Scholar

19 M. L.Ding, B. J.Yu, L.Sun, X. J.Yu: Effects of heat treatment on microstructure and mechanical properties of high Ni-Cr centrifugal composite ductile cast iron rolls, Heat Treatment of Metals39 (2014), No. 11, pp. 899210.13251/j.issn.0254-6051.2014.11.021Search in Google Scholar

20 X. M.Sang, P. C.Wang, L. Q.Ai, Y. G.Li, J. L.Bu: Effect of austempering temperature on microstructure and properties of carbidic austempered ductile iron, Advanced Materials Research284 (2011), No. 8, pp. 1085108810.4028/www.scientific.net/AMR.284-286.1085Search in Google Scholar

21 Y.Tanaka, H.Kage: Development and application of austempered spheroidal graphite cast iron, International Journal of Fatigue33 (1992), No. 6, pp. 54355710.1016/0142-1123(93)90564-7Search in Google Scholar

22 W. T.Reynolds, F. Z.Li, C. K.Shui, H. I.Aaronson: The incomplete transformation phenomenon in Fe-C-Mo alloys, Metallurgical Transactions A, 21 (1990), No. 6, pp. 1433146310.1007/BF02672561Search in Google Scholar

23 G. I.Sil”Man, V. V.Kamynin, A. A.Tarasov: Effect of copper on structure formation in cast iron, Metal Science and Heat Treatment45 (2003), No. 7, pp. 25425810.1023/a:1027320116132Search in Google Scholar

24 Y.Mi: Effect of Cu, Mo, Si on the content of retained austenite of austempered ductile iron, Scripta Metallurgica et Materialia32 (1995), No. 9, pp. 0131710.1016/0956-716x(95)00163-pSearch in Google Scholar

25 A.Basso, S.Laino, R. C.Dommarco: Wear behavior of carbidic ductile iron with different matrices and carbide distribution, Tribology Transactions56 (2013), No. 1, pp. 334010.1080/10402004.2012.725149Search in Google Scholar

26 C. F.Han, Q. Q.Wang, Y. F.Sun, J.Li: Effects of molybdenum on the wear resistance and corrosion resistance of carbidic austempered ductile iron, Metallography, Microstructure, and Analysis4 (2015), pp. 29830410.1007/s13632-015-0215-3Search in Google Scholar

27 S.Panneerselvam, C. J.Martis, S. K.Putatunda, J. M.Boileau: An investigation on the stability of austenite in austempered ductile cast iron (ADI), Mater. Sci. Eng. A626 (2015), No. 7, pp. 23724610.1016/j.msea.2014.12.038Search in Google Scholar

28 S.Policastro, F.Martin, P.Natishan, P.Moran: Corrosion and corrosion control, British Corrosion Journal21 (1986), No. 3, pp. 147 10.1002/0471238961.0315181813151801.a01.pub3Search in Google Scholar

29 H.Krawiec, J.Lelito, E.Tyra, J.Banaś: Relationships between microstructure and pitting corrosion of ADI in sodium chloride solution, Journal of SolidState Electrochemistry13 (2009), No. 6, pp. 93594210.1007/s10008-008-0636-xSearch in Google Scholar

30 C. H.Hsu, K.T.Lin: Effects of copper and austempering on corrosion behavior of ductile iron in 3.5 pct sodium chloride, Metallurgical & Materials Transactions A45 (2014), No. 3, pp. 151715230.1007/s11661-013-2059-2Search in Google Scholar

31 S.Balos, D.Rajnovic, M.Dramicanin, D.Labus, O.Eric-Cekic, J.Grbovic-Novakovic, L.Sidjanin: Abrasive wear behaviour of ADI material with various retained austenite content, Int. J. Cast Met. Res.29 (2016), No. 4, pp. 18719310.1080/13640461.2015.1125982Search in Google Scholar

Published Online: 2019-08-30
Published in Print: 2019-08-30

© 2019, Carl Hanser Verlag, München

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.111394/html
Scroll to top button