Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 26, 2018

Effect of residual Alclad on friction stir spot welds of AA2219 alloys

Effekt von Rest-Alclad auf Rührreibpunktschweißungen der Legierung AA2219
  • Olatunji Oladimeji Ojo , Emel Taban and Erdinc Kaluc
From the journal Materials Testing

Abstract

This paper aims to determine the role of in-nugget/residual Alclad in the friction stir spot welds of 1.6 mm thick Alclad AA2219 aluminum alloy via an assessment of microstructure, mechanical properties and fracture modes of welds. Alclad redistribution/dispersion within the stir zone of the alloy is varied by using different tool profiles (pinless and conical pin tools) and welding parameter combinations. The results reveal that a pinless tool facilitates the retention of Alclad within the weld's effective joint line/width while no substantial residual Alclad is observed in the effective bonded width of a conical pin weld. The increase in tool depth improves the weld strength of a pinless weld. The fracture morphology of a pinless weld is influenced by the in-nugget Alclad content. Interfacial fracture with midpoint defect, interfacial fracture and nugget pull-out are the fracture modes of pinless welds while a conical pin weld fails by circumferential nugget shear failure. A direct correlation exists between nugget rotation and lap shear failure load. Maximum lap shear failure loads of 4.0 kN and 2.1 kN are obtained in pinless and conical pin welds at the optimum welding parameter combinations of 1500 rpm – 0.8 mm – 8 s and 1400 rpm – 0.43 mm – 4 s, respectively.

Kurzfassung

Diese Arbeit zielt darauf ab, die Rolle von innenliegenden Nugget/Rest-Alclad in Rührreibpunktschweißungen von 1,6 mm dicker Alclad-AA2219-Aluminiumlegierung über die Bewertung der Mikrostruktur, der mechanischen Eigenschaften und der Brucharten von Schweißnähten zu bestimmen. Die Umverteilung/Dispergierung von Alclad innerhalb der Rührzone der Legierung wird durch Verwendung verschiedener Werkzeugprofile (stiftlose und konische Stiftwerkzeuge) und Schweißparameterkombinationen variiert. Die Ergebnisse zeigen, dass das stiftlose Werkzeug die Retention von Alclad innerhalb der effektiven Fugenlinie/-breite der Schweißnaht fördert, während kein wesentliches restliches Alclad in der effektiven gebundenen Breite der Schweißnaht mit konischem Stiftwerkzeug beobachtet wird. Die Vergrößerung der Werkzeugtiefe verbessert die Schweißnahtfestigkeit von stiftlos erzeugten Schweißnähten. Die Bruchmorphologie der stiftlos erzeugten Schweißnaht wird durch den Gehalt innenliegender Alclad-Nuggets beeinflusst. Grenzflächenbruch mit Mittelpunktdefekt, Grenzflächenbruch und Nuggetausreißen sind die Bruchmodi von stiftlosen Schweißnähten, während konische Stiftschweißung infolge umlaufender Nuggetscherung versagen. Es besteht eine direkte Korrelation zwischen der Drehung der Nuggets und der Zugscherbruchlast. Die maximale Zugscherbruchlast. von 4,0 kN und 2,1 kN werden für stiftlos und mit konischem Stiftwerkzeug erzeugten Schweißnähten bei den optimalen Schweißparameterkombinationen von 1500 U/min – 0,8 mm – 8 s und 1400 U/min – 0,43 mm – 4 s erreicht.


*Correspondence Address, Prof. Dr. Emel Taban, Kocaeli University, Engineering Faculty, Dept. of Mechanical Engineering, 41380, Kocaeli, Izmit, Turkey, E-mail: ,

Dr. Olatunji Oladimeji Ojo, born in 1983, worked as a research assistant from 2010 to 2012 and presently holds the position of Assistant Lecturer at the Federal University of Technology Akure, Ondo State, Nigeria. He obtained his BS in mechanical engineering and MSc in production engineering option from the school of engineering and engineering technology, the Federal University of Technology, Akure, Nigeria in 2008 and 2012, respectively. He completed his PhD in 2016 at Kocaeli University, Turkey. His current research interest covers welding engineering technologies and material characterizations.

Prof. Dr. Emel Taban, born in 1980, received her BS, MSc and PhD in Mechanical Engineering in 2002, 2004 and 2007, respectively. She has been working as Professor in the Department of Mechanical Eng. at Kocaeli University, Turkey and is the Vice Director of the Welding Research Center. She has over 100 publications and books on welding technologies, weldability and welding metallurgy of stainless steels, high alloyed steels and aluminum alloys using conventional and advanced welding processes.

Prof. Dr. Erdinc Kaluc, born in 1958, received his BS, MSc and PhD in Mechanical Engineering in 1980, 1982 and 1988, respectively. He has 30 years of experience and over 200 publications in welding technologies, welding metallurgy and welding of stainless steels, HSLA steels and aluminum alloys. He has been working as Professor in the Department of Mechanical Engineering at the University of Kocaeli, Turkey since 1997 and serves as Director of Welding Research Center.


References

1 Z. M.Su, R. Y.He, P. C.Lin, K.Dong: Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets. International Journal of Fatigue61 (2013), pp. 12914010.1016/j.ijfatigue.2013.11.021Search in Google Scholar

2 S. S.Babu, V. S.Sankar, J. G. D.Ram, P. V.Venkitakrishnan, R. G.Madhusudhan, R. K.Prasad: Microstructure and Mechanical properties of friction stir spot welded aluminium alloy AA2014. JMEPEG22 (2013), pp. 718410.1007/s11665-012-0218-zSearch in Google Scholar

3 Z.Li, Y.Yue, S.Ji, C.Peng, L.Wang: Optimal design of thread geometry and its performance in friction stir spot welding. Materials & Designs94 (2016), pp. 36837610.1016/j.matdes.2016.01.081Search in Google Scholar

4 H. B.Chen, J. F.Wang, G. D.Zhen, S. B.Chen, T.Lin: Effects of initial oxide on microstructure and mechanical properties of friction stir welded AA2219 alloy. Materials & Design86 (2015), pp. 495410.1016/j.matdes.2015.06.179Search in Google Scholar

5 R.Fu, H.Xu, G.Luan, C.Dong, F.Zhang, G.Li: Top surface microstructure of friction-stir welded AA2524-T3 aluminum alloy joints. Materials Characterization65 (2012), pp. 485410.1016/j.matchar.2011.12.007Search in Google Scholar

6 Z.Liu, H.Cui, S.Ji, M.Xu, X.Meng: Improving Joint Features and Mechanical Properties of Pinless Fiction Stir Welding of Alcald 2A12-T4 Aluminum Alloy. Journal of Materials Science & Technology32 (2016), pp. 13721377, 10.1016/j.jmst.2016.07.003Search in Google Scholar

7 Y. Q.Zhao, H. J.Liu, Z.Lin, S. X.Chen, J. C.Hou: Microstructures and mechanical properties of friction spot welded Alclad 7B04-T74 aluminium alloy. Science and Technology of Welding and Joining19 (2014), pp. 61762210.1179/1362171814Y.0000000235Search in Google Scholar

8 A.Kubit, R.Kluz, T.Trzepieciński, D.Wydrzyński, W.Bochnowski: Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets. Archives of Civil and Mechanical Engineering18 (2018), pp. 23524410.1016/j.acme.2017.07.005Search in Google Scholar

9 Y. Q.Zhao, H. J.Liu, S. X.Chen, Z.Lin, J. C.Hou: Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Materials & Design62 (2014), pp. 404610.1016/j.matdes.2014.05.012Search in Google Scholar

10 O. O.Ojo, E.Taban, E.Kaluc: Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Materials & Design108 (2016), pp. 51852810.1016/j.matdes.2016.07.013Search in Google Scholar

11 A.Reilly, H.Shercliff, Y.Chen, P.Prangnell: Modelling and visualization of material flow in friction stir spot welding. J. Mater. Process. Technol.225 (2015), pp. 473484, 10.1016/j.jmatprotec.2015.06.021Search in Google Scholar

12 M.de Leon, H. S.Shin: Material flow behaviours during friction stir spot welding of lightweight alloys using pin and pinless tools. Sci. Technol. Weld. Join.21 (2016), pp. 14014610.1179/1362171815Y.0000000075Search in Google Scholar

13 S.Horie, K.Shinozaki, M.Yamamoto, T. H.North: Experimental investigation of material flow during friction stir spot welding. Sci. Technol. Weld. Join.15 (2010), pp. 66667010.1179/136217110X12785889550145Search in Google Scholar

14 Y. C.Lin, J. J.Liu, J. N.Chen: Material flow tracking for various tool geometries during the friction stir spot welding process. J. Mater. Eng. Perform.22 (2013), pp. 36743683, 10.1007/s11665-013-0680-2Search in Google Scholar

15 W.Yuan, R. S.Mishra, S.Webb, Y. L.Chen, B.Carlson, D. R.Herling, G. J.Grant: Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Process Technol.211 (2011), pp. 972977, 10.1016/j.jmatprotec.2010.12.014Search in Google Scholar

16 H.Badarinarayan, Y.Shi, X.Li, K.Okamoto: Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminium 5754-O sheets. International journal of machine tools and manufacture49 (2009), pp. 81482310.1016/j.ijmachtools.2009.06.001Search in Google Scholar

17 O. O.Ojo, E.Taban, E.Kaluc: Friction stir spot welding of aluminium alloys: A recent review. Material testing.57 (2015), pp. 609627, 10.3139/120.110752Search in Google Scholar

18 A.Gelich, M.Yamamoto, T. H.North: Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metallurgical and materials transactions A38 (2007), pp. 1291130210.1007/s11661-007-9155-0Search in Google Scholar

19 C. I.Cheng, C. J.Lee, J. C.Huang: Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia51 (2004), pp. 50951410.1016/j.scriptamat.2004.05.043Search in Google Scholar

20 S.Lathabai, M. J.Painter, G. M. D.Cantin, V. K.Tyagi: Friction spot joining of an extruded Al-Mg-Si alloy. Scripta Materialia55 (2006), pp. 89990210.1016/j.scriptamat.2006.07.046Search in Google Scholar

21 Y.Lin, J.Chen: Influence of process parameters on friction stir spot welded aluminium joints by various threaded tools. Journal of materials processing technology225 (2015), pp. 34735610.1016/j.jmatprotec.2015.06.024Search in Google Scholar

22 A. H.Plaine, U. F. H.Suhuddin, C. R. M.Afonso, N. G.Alcantara, J. F.dos Santos: Interface formation and properties of friction stir spot welded joints of AA5474 and Ti6Al4 V alloys. materials and design93 (2016), pp. 224231, 10.1016/j.matdes.2015.12.170Search in Google Scholar

23 U.Donatus, G. E.Thompson, X.Zhou, J.Wang, K.Beamish: Flow patterns in friction stir welds of AA5083 and AA6082 alloys. Materials & Design83 (2015), pp. 20321310.1016/j.matdes.2015.06.006Search in Google Scholar

24 M.Sajed, H.Bisadi: Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys. Weld World60 (2016), pp. 334010.1007/s40194-015-0268-6Search in Google Scholar

Published Online: 2018-09-26
Published in Print: 2018-10-27

© 2018, Carl Hanser Verlag, München

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.111245/html
Scroll to top button