Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2018

Design of vehicle parts under impact loading using a multi-objective design approach

Design von Fahrzeugkomponenten unter Hochgeschwindigkeitsbeanspruchung mittels eines Multizielansatzes
  • İsmail Öztürk , Necmettin Kaya and Ferruh Öztürk
From the journal Materials Testing

Abstract

In this study, a multi-objective design approach with accelerated methodology was developed for a B-pillar (side door pillar) in which the intrusion velocity was decreased and the crash energy absorbed. The B-pillar material characteristics were determined using a drop tower test to accelerate the design process instead of a vehicle crash test. A finite element simulation of the drop tower test was conducted, and the results obtained from the simulation were confirmed with the test results. The side impact finite element model was simulated according to the Euro NCAP test protocol, and the B-pillar was divided into two sections using the results obtained from the analysis. Tailor rolled blank and Tailor welded blank B-pillar crash simulations were performed, and the results were compared to examine the intrusion velocity. Alternative design solutions for single and multi-material B-pillars were conducted to design an optimum B-pillar structure. The design functions were created using the radial basis function method, and the failure criteria were determined for the analyses. Optimization problems for weight minimization and maximum energy absorption were established and solved using meta-heuristic methods. The approach suggested in this study can be used in accelerated B-pillar designs.

Kurzfassung

In der diesem Beitrag zugrundeliegenden Studie wurden ein Multizielansatz mit einer beschleunigten Methodologie für die B-Säule/Seitentür-Säule entwickelt, in der die Eindringgeschwindigkeit vermindert und die Crash-Energie absorbiert wird. Die Charakteristika des Werkstoffes für die B-Säule wurden mittels eines Fallversuches ermittelt, um anstelle von Fahrzeugcrashversuchen den Prozess des Designs zu beschleunigen. Es wurde eine Finite-Elemente-Analyse des Fallversuches durchgeführt und die Ergebnisse, die aus den Analysen gewonnen wurden, wurden mit den Versuchsergebnissen bestätigt. Das Finite-Elemente-Modell des Seitenaufpralls wurde entsprechend des Euro NCAP Testprotokolls aufgestellt und die B-Säule wurde in zwei Sektionen aufgeteilt, wobei die Ergebnisse der Analysen verwandt wurden. Es wurden Crash-Simulationen mit gewalzten und geschweißten Tailored Blanks durchgeführt und die Ergebnisse wurden verglichen, um die Intrusionsgeschwindigkeit zu untersuchen. Es wurden alternative Lösungen des Designs für B-Säulen aus einem und mehreren Werkstoffen ermittelt, um die B-Säule optimal auszulegen. Hierzu wurden die Designfunktionen generiert, indem das so genannte Verfahren der Radialbasisfunktion angewandt wurde und indem die Versagenskriterien für die Analysen bestimmt wurden. Es wurden Optimierungsaufgaben für die Gewichtsminimierung und die maximale Energieabsorption etabliert und mit meta-heuristischen Verfahren gelöst. Der Ansatz, der in dieser Studie vorgeschlagen wird, kann für ein beschleunigtes Design der B-Säule genutzt werden.


*Correspondence Address, Dr. İsmail Öztürk, Faculty of Engineering, Department of Automotive Engineering, Uludağ University, Gorukle, Bursa 16059, Turkey, E-mail:

Dr. İsmail Öztür is a research assistant in the Automotive Engineering Department at Uludağ University, Bursa, Turkey and received his PhD in Automotive Engineering from that university. Before joining Uludağ University, he worked at the Durmazlar machine factory in Bursa, Turkey. His research interests are vehicle crashworthiness, accelerated design, B-pillar and vehicle bumper optimization.

Prof. Dr. Necmettin Kaya received his BSc degree in Mechanical Engineering at the Uludağ University in 1990. He obtained his MSc degree in 1992 from that university also in Mechanical Engineering. He joined the doctoral program in the mechanical engineering department in 1993. He completed his PhD degree in 1999, while conducting research in the area of feature-based modular fixture design. Since 2013, he has been Professor at the Mechanical Engineering Department of Uludağ University. His principal research areas are computer aided design, finite element method, evolutionary algorithms, and structural optimization.

Prof. Dr. Ferruh Öztürk is a professor at the Automotive Engineering Department of Uludağ University, Bursa, Turkey. He received his PhD in Mechanical and Manufacturing Systems Engineering from Bradford University, England. Before joining Uludağ University, he worked at the TOFAŞ-FIAT automotive factory in Bursa, Turkey. His research interests include vehicle design and dynamics, computer aided design and optimization, artficial intelligence.


References

1 İ.Öztürk, F.Öztürk: Crash analysis and optimization of vehicle B-pillar with accelerated design techniques, Proc. of OTEKON 2016–8, Automotive Technologies Congress (2016), pp. 270276 (in Turkish)Search in Google Scholar

2 A. R.Yıldız, E.Kurtuluş, E.Demirci, B. S.Yıldız, S.Karagöz: Optimization of thin wall structures using hybrid gravitational search and Nelder-Mead algorithm, Materials Testing58 (2016), No. 1, pp. 757810.3139/120.110823Search in Google Scholar

3 B.Zhang, J.Yang, Z.Zhong: Optimisation of vehicle side interior panels for occupant safety in side impact, International Journal of Crashworthiness15 (2010), No. 6, pp. 61762310.1080/13588265.2010.484193Search in Google Scholar

4 F.Pan, P.Zhu, Y.Zhang: Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression, Computers and Structures88 (2010), No. 1–2, pp. 364410.1016/j.compstruc.2009.07.008Search in Google Scholar

5 Z.Yang: Lightweight design of B-pillar with TRB concept considering crashworthiness, L.O'Conner (Ed.): 2012 Third International Conference on Digital Manufacturing and Automation, ConferencePublishing Services, Danvers, USA (2012), pp. 51051310.1109/ICDMA.2012.121Search in Google Scholar

6 L.Cao: Reliability optimal design of B-pillar in side impact, Proc. of the SAE 2016 World Congress and Exhibition, SAE International, United States (2016) 10.4271/2016-01-1523Search in Google Scholar

7 İ.Öztürk: Design of vehicle parts under impact using multi objective design approach with accelerated methodology, PhD Thesis, Department of Automotive Engineering, Uludağ University, Bursa, TurkeySearch in Google Scholar

8 F.Xu, G.Sun, G.Li, Q.Li: Crashworthiness design of multi-component tailor welded blank (TWB) structures, Structural and Multidisciplinary Optimization48 (2013), No. 3, pp. 65366710.1007/s00158-013-0916-7Search in Google Scholar

9 P. O.Marklund, L.Nilsson: Optimization of a car body component subjected to side impact, Structural and Multidisciplinary Optimization21 (2001), No. 5, pp. 38339210.1007/s001580100117Search in Google Scholar

10 D. D.Múnera: Very and ultra high strength steels basedtailored welded blanks: a step further towards crashworthiness improvement, Proc. of the 2006 SAE World Congress, SAE International, Warrendale, USA (2006), pp. 79680410.4271/2006-01-1213Search in Google Scholar

11 G.Chen, M. F.Shi, T.Tyan: Optimized AHSS structures for vehicle side impact, SAE International Journal of Materials and Manufacturing5 (2012), No. 2, pp. 30431310.4271/2012-01-0044Search in Google Scholar

12 L.Zheng: Multi objective optimization of vehicle crashworthiness based on combined surrogate models, Proc. of the WCX 17: SAE World Congress Experience, SAE International, United States (2017), pp. 44746010.4271/2017-01-1473Search in Google Scholar

13 K.Watanabe, Vehicle side structure concept using ultra high strength steel and rollforming technology, Proc. of the 2006 SAE World Congress, SAE International, Warrendale (2006) 10.4271/2006-01-1403Search in Google Scholar

14 S.Kumar: Improving side crash performance of a compact car via CAE, Proc. of the SAE 2014 World Congress and Exhibition, SAE International, United States (2014) 10.4271/2014-01-0546Search in Google Scholar

15 T.Tsuchida: The application of damage & fracture material model to crashworthiness evaluations for aluminum cars, Proc of the International Body Engineering Conference and Exposition, SAE International, United States (2003), pp. 17517910.4271/2003-01-2776Search in Google Scholar

16 A. K.Pickett, T.Pyttel, F.Payen, F.Lauro, N.Petrinic, H.Werner, J.Christlein: Failure prediction for advanced crashworthiness of transportation vehicles, International Journal of Impact Engineering30 (2004), No. 7, pp. 853872, 10.1016/j.ijimpeng.2004.04.004Search in Google Scholar

17 J.Marzbanrad: Damage modeling in crashworthiness of dual-phase steel, Proc. of the 21st International Conference on Mechanical Engineering ISME2013 (2013), pp. 16Search in Google Scholar

18 http://www.instron.com.tr/tr-tr/our-company/library/glossary/i/impact-test, 2017Search in Google Scholar

19 http://www.datapointlabs.com/testpaks/3pointbending.htm, 2017Search in Google Scholar

20 http://www.ncac.gwu.edu/vml/models.html, 2016Search in Google Scholar

21 L.Shi, R.-J.Yang, P.Zhu: An adaptive response surface method for crashworthiness optimization, Engineering Optimization45 (2013), No. 11, pp. 1365137710.1080/0305215X.2012.734815Search in Google Scholar

22 ST Engineering-Altair HyperWorks, Troy, Michigan, USASearch in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-05-26

© 2018, Carl Hanser Verlag, München

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.3139/120.111174/html
Scroll to top button