Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 28, 2013

Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance

Topologie-Optimierung eines Mikro/Nano-nachgiebigen Greifers mit parallelen beweglichen Spitzen
  • Mahmoud Helal , Lining Sun , Liguo Chen and Weibin Rong Harbin
From the journal Materials Testing

Abstract

The past few years have witnessed an increasing maturity of the micro- and nano-electro-mechanical systems (Mems/Nems) industry and a rapid introduction of new products addressing applications ranging from biochemical analysis to fiber-optic telecommunications. The assembly of micro-devices involves handling of parts that are extremely very small. A microgripper compliant mechanism is one of the key elements in micro-robotics and micro-assembly technologies for handling and manipulating micro- objects without damage. This paper presents the design of compliant grip and move manipulators with parallel movement tips. The integration of both, gripping and moving manipulators, with parallel movement tips is accomplished by the use of compliant mechanisms, which generate paths that are symmetric. These mechanisms can grip an object and convey it from one point to another with parallel movement. The structural topology optimization approach is applied in order to find the optimal material distribution in the proposed domain for compliant mechanisms. The objective of the optimization problem is to maximize the structural stiffness within the limit of prescribed design volume. A two-dimensional finite element analysis model using Ansys is constructed for the proposed design domain. Three optimal configurations of two-dimensional compliant mechanism, which can realize a micro grip and move with parallel movement tips for a wide range of micro- and nano-objects, are demonstrated.

Kurzfassung

Die letzten Jahre haben eine wachsende Reife der Industrie für Mikro- und Nano-Elektro-Meachnischen Systeme (Mems/Nems) erfahren sowie eine rapide Einführung neuer Produkte für Applikationen, die von der biomedizinischen Handhabung bis zur faser-optischen Telekommunikation reichen. Der Zusammenbau von Mikroapparaten umfasst die Handhabung von extreme kleinen Teilen. Ein Mechanismus für das federnde Greifen stellt ein Schlüsselelement für die Technologie der Mikrorobotik und Mikroanordnung dar, um Mikroobjekte ohne Schädigung handhaben und manipulieren zu können. Im vorliegenden Beitrag wird das Design eines federnden Greifers und der Bewegungsmanipulatoren mit parallel beweglichen Spitzen vorgestellt. Die Integration von beiden, der Greif- und Bewegungsmanipulatoren, mit parallelen beweglichen Spitzen wird durch die Anwendung eines Federmechanismus erreicht, der Pfade generiert, die symmetrisch verlaufen. Diese Mechanismen können ein Objekt greifen und es mit einer Parallelbewegung von einem zum anderen Ort bringen. Hierzu wird ein Ansatz zur strukturellen Topologieoptimierung angewendet, um die optimal Materialverteilung in dem vorgesehenen Anwendungsbreich für den federnden Mechanismen zu finden. Das Ziel der Optimierungsaufgabe liegt darin, die strukturelle Steifigkeit innerhalb eines vorgeschriebenen Designvolumens zu maximieren. Für den vorgegebenen Designumfang wurde ein zweidimensionales Model mit dem Programmpaket Ansys entworfen. Drei optimale Konfigurationen des zweidimensionalen federnden Mechanismus, der einen Mikrogriff und eine Bewegung mit parallelen Spitzen für einen großen Bereich von Mikro- und Nano-Objekten realisieren kann, werden vorgestellt.


Assistant Lecturer Mahmoud Helal, born in 1978, PhD student at the State Key Laboratory of Robotics and System, Harbin Institute of Technology — Harbin — China, studied Mechanical Engineering in Production Engineering and Mechanical Design Department at the Mansoura University from1995 to 2000. In 2005, he finished his MSc. He works as an assistant lecture in the Production Engineering and Mechanical Design Department at the Mansoura University.

Professor Lining Sun graduated with the Bachelor's degree at the Mechanical Engineering and wMaster's degree in Harbin Institute of Technology in 1985 and 1988 and completed his Ph.D. degree in mechatronics engineering in 1993. His research interests have encompassed a number of related areas, including: robot control, design of actuators, design and control of high speed machines, MEMS 3D assembly, MEMS robotic task execution, micromanipulation robot, etc. He has published extensively in journals and conferences and has supervised over 50 masters and Ph.D. students and a number of Post-Doctoral Fellows and Research Engineers in these various research areas.

Associate Professor Liguo Chen received his bachelor and master degrees in Mechanical at the Harbin Institute of Science and Technology in 1997 and 2000. He received his Ph.D. degree in mechatronics at the Harbin Institute of Technology in 2003. Since 2003, he has been with the Robotics Institute at the Harbin Institute of Technology, and is now an Associate Professor. Dr. Chen's research interests lie in robotics and automation, computer vision, MEMS 3D assembly, and micromanipulation robot.

Professor Weibin Rong received his B.S. degree in mechanical engineering, M.S. degree, and Ph.D. degree in mechatronics engineering from Harbin Institute of Technology, Harbin, China, in 1994, 1998, and 2002, respectively. He is now a professor in the State Key Laboratory of Robotics and System. His main research interests are in the areas of nano-positioning technology and micro/nano-manipulation robotics. Since 2000, he has been engaged in nanopositioning techniques, micromanipulators, and tele-micromanipulating techniques, as well as developing micromanipulation and microassembly equipments for special applications. He has had 12 national patents and authored or co-authored more than 80 papers in some journals and international conferences.


References

1 M. G.El-Hak: The MEMS handbook, CRC Press (2002)Search in Google Scholar

2 G. K.Ananthasuresh: Optimal Synthesis Methods for MEMS, New York, Springer (2003)10.1007/978-1-4615-0487-0Search in Google Scholar

3 L. L.Howell: Compliant Mechanisms, John Wiley & Sons, New York (2001)Search in Google Scholar

4 L. L.Howell, A.Midha: A method for the design of compliant mechanisms with small-length flexural pivots, ASME Journal of Mechanical Design116 (1994), pp. 28029010.1115/1.2919359Search in Google Scholar

5 G. K.Ananthasuresh, S.Kota, Y.Gianchandani: A methodical approach to the design of compliant micromechanisms, Proc. of the Solid-State Sensor and Actuator Workshop, South Carolina (1994), pp. 189192Search in Google Scholar

6 Sigmund: On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach25 (1997), pp. 49352410.1080/08905459708945415Search in Google Scholar

7 H. A.Eschenauer, N.Olhoff: Topology optimization of continuum structures: a review, Applied Mechanics Reviews54 (2001), pp. 33138910.1115/1.1388075Search in Google Scholar

8 M. P.Bendsoe, O.Sigmund: Topology Optimization, Theory, Methods and Applications, New York, Springer-Verlag (2003)Search in Google Scholar

9 M. P.Bendsøe, O.Sigmund: Material interpolation schemes in topology optimization, Archives of Applied Mechanics69 (1999), pp. 63565410.1007/s004190050248Search in Google Scholar

10 M. P.Bendsøe, N.Kikuchi: Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering71 (1988), pp. 19722410.1016/0045-7825(88)90086-2Search in Google Scholar

11 Y. L.Mei, X. M.Wang: A level set method for structural topology optimization and its applications, Advances in Engineering Software35 (2004), pp. 41544110.1016/j.advengsoft.2004.06.004Search in Google Scholar

12 Z.Luo, L. Y.Tong: A level set method for shape and topology optimization of large-displacement compliant mechanisms, International Journal for Numerical Methods in Engineering76 (2008), pp. 86289210.1002/nme.2352Search in Google Scholar

13 K. J.Lu, S.Kota: Compliant Mechanism Synthesis for Shape-Change Applications Preliminary Results, Proceedings of the 2002 SPIE Modeling Signal Processing and Control Conference, San Diego (2002), pp. 161172Search in Google Scholar

14 K. J.Lu, S.Kota: Design of Compliant Mechanisms for Morphing Structural Shapes, Journal of Intelligent Materials Systems and Structures14 (2003), pp. 37939110.1177/1045389X03035563Search in Google Scholar

15 Y. M.Xie, G. P.Steven: A simple evolutionary procedure for structural optimization, Computers and Structures49 (1993), pp. 88589610.1016/0045-7949(93)90035-CSearch in Google Scholar

16 Y.M.Xie, G. P.Steven: Evolutionary Structural Optimization, London, Springer (1997)10.1007/978-1-4471-0985-3Search in Google Scholar

17 G.Rozvany: A critical review of established methods of structural topology optimization, Structural and Multidisciplinary Optimization37 (2008), pp. 21723710.1007/s00158-007-0217-0Search in Google Scholar

18 ANSYS Inc.: ANSYS Theory Reference Release 11.0 (2007)Search in Google Scholar

19 M.Erdogan, G.Ibrahim: The Finite Element Method and Applications in Engineering Using ANSYS, Springer (2006)Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.110239/html
Scroll to top button