Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2020

Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios

Zusammensetzung und Solubilisierung von Triton X-100 enthaltenden Mikroemulsionssystemen: Einflüsse der wässrigen Zusammensetzung und des Öl-Wasser-Verhältnisses
  • Miaomiao Song , Qian Wang , Wenjiao Liu , Jiao Wang and Jinling Chai

Abstract

The composition and solubilization of the optimum microemulsion systems containing Triton X-100/pentan-1-ol/aliphatic hydrocarbon/water were studied with the ∊-β fishlike phase diagram method. The solubilities of the alkanol (SA), the mass fractions of the alkanol in the interfacial layer (AS) and the optimum solubilization parameters (SP∗) of the microemulsion systems with different aqueous phases (salt, acid, alkali) and with different α values were obtained and discussed. The SP∗ values increase significantly with the cation radius of the chlorides (NaCl, KCl, CsCl), but decrease slightly with the anion radius of the sodium halides (NaCl, NaBr, NaI). However, SP∗ values decrease with the increased salinities and NaOH contents. The trend was reversed for the acid systems. When the oil-water ratio (α) increases, the SA and AS values significantly increase, while the SP∗ values increase slowly. As the length of the carbon chain of the alkane molecules increases, both the SA and AS values increase, while the SP∗ values decrease significantly.

Kurzfassung

Die Zusammensetzung und Solubilisierung der optimierten Mikroemulsionssysteme Triton X-100/Pentan-1-ol/aliphatischer Kohlenwasserstoff/Wasser wurden mit der Methode des ∊-β-Fisch-Phasendiagramms untersucht. Die Löslichkeiten des Alkanols (SA), die Massenanteile des Alkanols in der Grenzschicht (AS) und die optimalen Solubilisierungsparameter (SP∗) der Mikroemulsionssysteme mit unterschiedlichen wässrigen Phasen (Salz, Säure, Alkali) und mit unterschiedlichen α-Werten wurden erhalten und diskutiert. Die SP∗-Werte erhöhen sich signifikant mit dem Kationenradius der Chloride (NaCl, KCl, CsCl), verringern sich jedoch geringfügig mit dem Anionenradius der Natriumhalogenide (NaCl, NaBr, NaI). Die SP∗-Werte nehmen jedoch mit zunehmenden Salzgehalten und NaOH-Gehalten ab. Bei den Säuresystemen war der Trend umgekehrt. Wenn sich das Öl-Wasser-Verhältnis (α) erhöht, nahmen die SA- und AS-Werte signifikant zu während sich die SP∗-Werte langsam erhöhen. Mit zunehmender Länge der Kohlenstoffkette der Alkanmoleküle nehmen sowohl die SA als auch die AS-Werte zu, während die SP∗-Werte signifikant abnehmen.


Correspondence address, Prof. Dr. Jinling Chai, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China, E-Mail:

Miaomiao Song, born in 1994, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is the phase behavior and the maximum solubilization capacity of microemulsions.

Qian Wang, born in 1990, Shanxi Province of China, is an Dsc candidate of Shandong Normal University. His interest of research is physical chemistry of surfactant solutions.

Wenjiao Liu, born in 1996, Shandong province of China, is an Msc candidate of Shandong Normal University. His interest of research is physical chemistry of surfactant solutions.

Jiao Wang, born in 1994, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is the properties and applications of surfactants.

Jinling Chai, born in 1961, Shandong Province of China, is a chemistry professor. He studied solvent extraction from 1985 to 1988 in Shandong University and got an Msc degree in 1988. In 1988–1999, he worked in department of chemistry, Shandong Normal University, teaching physical chemistry. He was a PhD candidate in Shandong University in 2000–2003 and obtained a PhD degree in 2003. Since 2003, he has worked in Shandong Normal University, researching physical chemistry of surfactant solutions. Special fields of interest are Physicochemical properties and applications of surfactant aggregates.


References

1. Abazari, R., Heshmatpour, F. and Balalaie, S.: Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions, ACS Catal.3 (2016) 139149. 10.1021/cs300507aSearch in Google Scholar

2. Dong, X., ZhuQ., Dai, Y. Q., He, J. F., Pan, H. Y., Chen, J. and Zheng, Z. P.: Encapsulation artocarpanone and ascorbic acid in O/W microemulsions: preparation, characterization, and antibrowning effects in apple juice, Food Chem.192 (2016) 10331040. PMid:26304444; 10.1016/j.foodchem.2015.07.124Search in Google Scholar PubMed

3. Lourith, N., Kanlayavattanakul, M. and Ruktanonchai, U.: Formulation and stability of moringa oleifera oil microemulsion, Soft Matter.14 (2016) 6471. 10.1080/1539445X.2016.1141786Search in Google Scholar

4. Attaphong, C. and Sabatini, D. A.: Optimized microemulsion systems for detergency of vegetable oils at low surfactant concentration and bath temperature, J. Surfactants Deterg.20 (2017) 805813. 10.1007/s11743-017-1962-8Search in Google Scholar

5. Callender, S. P., Mathews, J. A., Kobernyk, K. and Wettig, S. D.: Microemulsion utility in pharmaceuticals: implications for multi-drug delivery, Int. J. Pharm.526 (2017) 425442. PMid:28495500; 10.1016/j.ijpharm.2017.05.005Search in Google Scholar PubMed

6. Kunz, W., Zemb, T. and Harrar, A.: Using ionic liquids to formulate microemulsions: current state of affairs, Curr, Opin. Colloid Interface Sci.17 (2012) 205211. 10.1016/j.cocis.2012.03.002Search in Google Scholar

7. Acharya, D. P. and Hartley, P. G.: Progress in microemulsion characterization, Curr. Opin. Colloid Interface Sci.17 (2012) 274280. 10.1016/j.cocis.2012.07.002Search in Google Scholar

8. Koneva, A. S., Safonova, E. A., Kondrakhina, P. S., Vovk, M. A., Lezov, A. A., Chernyshev, Y. S. and Smirnova, N. A.: Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80, Colloids Surf., A.518 (2017) 273282. 10.1016/j.colsurfa.2017.01.020Search in Google Scholar

9. Chai, J. L., Song, J. W., Wang, D., Chai, H. H., Bai, T. T. and Liu, N.: Comparison of the composition and structural parameters of W/O microemulsions containing gemini imidazoliums with those containing monomeric analogues, J. Surfactants Deterg.18 (2015) 287295. 10.1007/s11743-014-1648-4Search in Google Scholar

10. Chai, J. L., Sun, B., Chai, Z. Q., Liu, N., Pan, J., and Lu, J.J.: Comparisions of the effects of temperature on the w/o microemlsions formed by alkyl imidazole gemini and imidazole ionic liquids type surfactants, J. Disper. Sci. Technol.38 (2017)967972. 10.1080/01932691.2016.1216439Search in Google Scholar

11. Zhang, Y., Zhang, X. Y., Chai, J. L., Cui, X. C., Pan, J. and Song, J. W.: The phase behavior and solubilization of isopropyl myristate in microemulsions containing cetyltrimethyl ammonium bromide and sodium dodecyl sulfate, J. Mol. Liq.244 (2017) 262268. 10.1016/j.molliq.2017.08.074Search in Google Scholar

12. Dantas, T. N. C., Neto, A. A. D., Moura, M. C. P. A., Neto, E. L. B., Forte, K. R. and Leite, R. H. L.: Heavy metals extraction by microemulsions, Water Res.37 (2003) 27092717. 10.1016/S0043-1354(03)00072-1Search in Google Scholar PubMed

13. He, D. S., Yang, C. M., Ma, M., Zhuang, L. X., Chen, X. and Chen, S.: Studies of the chemical properties of tri-n-octylamine–secondary octanol–kerosene–HCl–H2O microemulsions and its extraction characteristics for cadmium(II), Colloids Surf., A.232 (2004) 3947. 10.1016/j.colsurfa.2003.10.005Search in Google Scholar

14. Shaheen, A., Kaur, N. and Mahajan, R. K.: Influence of various series of additives on the clouding behavior of aqueous solutions of triblock copolymers, Colloid Polym. Sci.286 (2008) 319325. 10.1007/s00396-007-1780-zSearch in Google Scholar

15. Kahlwei, M., Lessner, R. and Strey, R.: Influence of the properties of the oil and the surfactant on the phase behavior of systems of the type water-oil-nonionic surfactant, J. Phys. Chem.87 (1983) 50325040. 10.1021/j150642a051Search in Google Scholar

16. Xu, L., Chai, J. L., Zhu, M. L., Liu, W., Shang, S. S. and Lu, J. J.: Interfacial composition and structural parameters of aqueous NaCl(HCl/NaOH)/CnmimBr/1-pentanol/n-octane microemulsions, Tenside Surfact. Det.48 (2011) 459465. 10.3139/113.110153Search in Google Scholar

17. Chai, J. L., Chai, H. H., Sun, H., Liu, N. N., Zhang, H. M. and Liu, Z. C.: Phase behavior and solubilization of microemulsion systems containing imidazolium type surfactant Cnmimbr and butyric acid as cosurfactant, Tenside Surfact. Det.51 (2014) 421426. 10.3139/113.110324Search in Google Scholar

18. Neubauer, R., Höhn, S., Dulle, M., Lapp, A., Schulreich, C. and Hellweg, T.: Protein diffusion in a bicontinuous microemulsion: inducing sub-diffusion by tuning the water domain size, Soft Matter.13 (2017) 19982003. PMid:28197579; 10.1039/C6SM02107GSearch in Google Scholar PubMed

19. Tien, T. H. and Bettahar, M.: Effect of the water–oil ratio on brine/surfactant/alcohol/oil systems optimized for soil remediation, J. Mater. Cycles Waste Manag.2 (2000) 109117. 10.1007/s10163-000-0024-9Search in Google Scholar

20. Kartsev, V. N., Shtykov, S. N., Sineva, A. V., Tsepulin, V. V. and Shtykova, L. S.: Volumetric and transport properties of water–n-octane–sodium dodecyl sulfate–n-pentanol microemulsions, Colloid J.65 (2003) 394397. 10.1023/A:1024279428053Search in Google Scholar

21. Mitra, R. K. and Paul, B. K.: Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic–ionic microemulsions with fish-tail diagrams, J. Colloid Interface Sci.291 (2005) 550559. PMid:16043189; 10.1016/j.jcis.2005.05.048Search in Google Scholar PubMed

22. Chai, J. L., Wu, Y. T., Li, X. Q., Yang, B. and Lu, J. J.: Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecyl sulfate, J. Solution Chem.40 (2011) 18891898. 10.1007/s10953-011-9764-5Search in Google Scholar

23. Chen, L. S., Pan, J., Sun, B., Zhang, X. Y., Cui, X. C., Lu, J. J. and Chai, J. L.: Phase behavior and solubilization of microemulsions containing C16mimBr with different oil-water ratios, Tenside Surfact. Det.54 (2017) 419426. 10.3139/113.110518Search in Google Scholar

24. Liao, Q. S., Chai, J. L., Bai, T. T., Wang, D., Sun, H. and Liu, N.: Effect of oil/water mass ratios on the composition and solubilization of microemulsion systems containing Tween/alcohol/alkane/NaCl solution, Tenside Surfact. Det.50 (2013) 186191. 10.3139/113.110247Search in Google Scholar

25. Wang, D., Li, H. L., Chai, J. L., Liao, Q. S. and Sun, H.: Phase behavior and solubilization of microemulsion systems containing gemini imidazoliums and their monomeric analogues, Colloid Polym. Sci.291 (2013) 24292437. 10.1007/s00396-013-2975-0Search in Google Scholar

26. Lu, J. J., Pan, J., Chai, J. L., Zhu, M. L., Chai, Z. Q., Zhang, X. Y. and Cui, X.C.: Interfacial composition and solubilization of microemulsion systems containing mixed surfactants C12mimBr and Brij35: effects of surfactant composition, temperature, and salinity, Colloid Polym. Sci.296 (2018) 11651172. 10.1007/s00396-018-4334-7Search in Google Scholar

27. Yang, Y. J., Corti, D. S. and Franses, E. I.: Effect of Triton X-100 on the stability of titania nanoparticles against agglomeration and sedimentation: a masked depletion interaction, Colloids Surf., A.516 (2017) 296304. 10.1016/j.colsurfa.2016.12.026Search in Google Scholar

28. Mukhija, A. and Kishore, N.: Drug partitioning in individual and mixed micelles and interaction with protein upon delivery form micellar media, J. Mol. Liq.265 (2018) 115. 10.1016/j.molliq.2018.05.107Search in Google Scholar

29. Liu, L. P. and Hao, J. C.: Study of ionic liquid microemulsions: ethylammonium nitrate/Triton X-100/cyclohexane, Tenside Surfact. Det.54 (2017) 214219. 10.3139/113.110500Search in Google Scholar

30. Hou, N., Chai, J. L., Zhang, J. Q., Song, J. W., Zhang, Y. and Lu, J. J.: Application of ∊-β fishlike phase diagrams on the microemulsion solubilizations of dense nonaqueous phase liquids, Fluid Phase Equilib.412 (2016) 211217. 10.1016/j.fluid.2015.12.024Search in Google Scholar

31. Chai, J. L., Pan, J., Chen, J. F., Sun, B. and Lu, J. J.: Phase equilibria, interfacial, and bulk compositions of microemulsions containing short-chain alcohols studied by an optimum microemulsion dilution method, Colloid Polym. Sci.295 (2017) 18351842. 10.1007/s00396-017-4146-1Search in Google Scholar

32. Qin, D., Wang, J., Sun, H., Song, M. M. and Chai, J. L.: A comparison study on the phase behavior and solubilization between Cn(Bim)2–2Br-butyric acid and CnmimBr-butyric acid microemulsion systems, Tenside Surfcat. Det.55 (2018) 477483. 10.3139/113.110588Search in Google Scholar

33. Kunieda, H., Nakano, A. and Pes, M. A.: Effect of alkane on the solubilization in microemulsion systems including nonionic surfactant mixtures, Langmuir.11 (1995) 33023306. 10.1021/la00009a006Search in Google Scholar

Received: 2019-05-13
Accepted: 2019-09-19
Published Online: 2020-03-09
Published in Print: 2020-03-16

© 2020, Carl Hanser Publisher, Munich

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/113.110671/html
Scroll to top button