Skip to content
BY 4.0 license Open Access Published by De Gruyter March 9, 2020

Antifungal Activity of Morpholine and Piperidine Based Surfactants

Antimykotische Aktivität von Tensiden auf Morpholin- und Piperidinbasis
  • Daria Wieczorek , Dobrawa Kwaśniewska , Li-Hang Hsu , Tang-Long Shen and Ying-Lien Chen

Abstract

Microorganisms have the remarkable capacity to develop resistance to antimicrobial agents. This is of particular concern for fungal pathogens which cause devastating invasive infections with limited treatment options. Thus the need for new antifungal agents is undeniable. This work presents the antifungal properties of four surfactant groups, namely two groups of sulfobetaines and two groups of quaternary ammonium compounds, all morpholine and piperidine derivatives, against drug susceptible or drug resistant Candida albicans and Cryptococcus neoformans. The values of minimum inhibitory and fungicidal concentrations were determined. As follows from the results, the activities of the obtained compounds differed, however the most active agents from each homologous series of compounds, such as P16S3, P16S4 and C16S3, were pointed out.

Kurzfassung

Mikroorganismen haben die bemerkenswerte Fähigkeit, Resistenzen gegen antimikrobielle Wirkstoffe zu entwickeln. Dies ist von besonderer Bedeutung für Pilzpathogene, die verheerende invasive Infektionen mit begrenzten Behandlungsmöglichkeiten verursachen. Somit ist der Bedarf an neuen Antimykotika nicht zu leugnen. Diese Arbeit präsentiert die antimykotischen Eigenschaften von vier Tensidgruppen, nämlich zwei Gruppen von Sulfobetainen und zwei Gruppen von quaternären Ammoniumverbindungen, allesamt Morpholin- und Piperindiderivate, gegen die arzneimittelempfindlichen oder -resistenten Candida albicans und Cryptococcus neoformans. Die Werte der minimalen inhibitorischen und fungiziden Konzentrationen wurden bestimmt. Wie aus den Ergebnissen hervorgeht, unterschieden sich die Aktivitäten der erhaltenen Verbindungen, jedoch wurden die aktivsten Wirkstoffe aus jeder homologen Reihe von Verbindungen wie z. B. P16S3, P16S4 und C16S3 herausgestellt.


Correspondence address, Dr. Dobrawa Kwaśniewska, Department of Technology and Instrumental Analysis, Faculty of Commodity Science, Poznan, Poland, E-Mail:

Dr. Daria Wieczorek is a lecturer at the Department of Technology and Instrumental Analysis at the Faculty of Commodity Science Poznan University of Economics and Business. In the area of scientific interest include synthesis of new zwitterionic surfactants, cosmetic ingredients, antimicrobial and surface activity of surfactants.

Dr. Dobrawa Kwaśniewska is a lecturer at the Department of Technology and Instrumental Analysis at the Faculty of Commodity Science Poznan University of Economics and Business. In the area of scientific interest include synthesis of homo- and heterogemini surfactants and their usage properties.

Dr. Ying-Lien Chen is an associate professor at the Department of Plant Pathology and Microbiology of National Taiwan University, Taipei, Taiwan. His research focuses on antifungal drug development, basic biology of human and plant fungal pathogens, and biological control of plant diseases.

Dr. Tang-Long Shen is a professor in the Department of Plant Pathology and Microbiology at National Taiwan University, Taipei, Taiwan. His research explores varied subjects, including microbes, plants to human, to understand the basic mechanisms of various pathologic developments as well as how to utilize the microbial metabolites and natural product for improving human health.

Li-Hang Hsu is a research assistant at the Department of Plant Pathology and Microbiology of National Taiwan University, Taipei, Taiwan. His research focuses on antifungal drug/compound screening, and investigation of drug/compound susceptibility in human and plant fungal pathogens.


References

1. Carmona, E. M. and Limper, A. H.: Overview of treatment approaches for fungal infections, Clinics in chest medicine.38(3) (2017) 393402. PMid:28797484; 10.1016/j.ccm.2017.04.003Search in Google Scholar

2. Yu, Q., Zhang, B., Ma, F., Jia, C., Xiao, C., Zhang, B. and Li, M.: Novel mechanisms of surfactants against Candida albicans growth and morphogenesis, Chemico-Biological Interactions.227 (2015). 16. PMid:25523088; 10.1016/j.cbi.2014.12.014Search in Google Scholar

3. Calderone, R. A. and Fonzi, W. A.: Virulence factors of Candida albicans, Trends in microbiology.9(7) (2001) 327335. 10.1016/S0966-842X(01)02094-7Search in Google Scholar

4. Rajasingham, R., Smith, R. M., Park, B. J., Jarvis, J. N., Govender, N. P., Chiller, T. M., DenningDW, LoyseA. and Boulware, D. R.: Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis, The Lancet infectious diseases.17(8) (2017) 873881. 10.1016/S1473-3099(17)30243-8Search in Google Scholar

5. Chang, Y. L., Yu, S. J., Heitman, J., Wellington, M. and Ward, Y. L.: New facets of antifungal therapy, Virulence.8(2) (2017) 222236. PMid:27820668; 10.1080/21505594.2016.1257457Search in Google Scholar PubMed PubMed Central

6. Loeffler, J. and Stevens, D. A.: (2003). Antifungal drug resistance. Clinical infectious diseases, 36(Supplement_1), (2003) 3141. PMid:12516028; 10.1086/344658Search in Google Scholar PubMed

7. White, T. C., Pfaller, M. A., Rinaldi, M. G., Smith, J. and Redding, S. W.: Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient, Oral diseases.3(Suppl 1) (1997) 102109. PMid:9456667; 10.1111/j.1601-0825.1997.tb00336.xSearch in Google Scholar PubMed

8. Garcia-Effron, G., Park, S. and Perlin, D. S.: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints, Antimicrobial agents and chemotherapy, 53(1) (2009) 112122. PMid:18955538; 10.1128/AAC.01162-08Search in Google Scholar PubMed PubMed Central

9. Obłąk, E., Piecuch, A., Krasowska, A. and Łuczyński, J.: Antifungal activity of gemini quaternary ammonium salts, Microbiological research.168(10) (2013) 630638. PMid:23827647; 10.1016/j.micres.2013.06.001Search in Google Scholar PubMed

10. Birnie, C. R., Malamud, D. and Schnaare, R. L.: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length, Antimicrobial agents and chemotherapy.44(9) (2000) 25142517. PMid:10952604; 10.1128/AAC.44.9.2514-2517.2000Search in Google Scholar PubMed PubMed Central

11. Yu, Q., Jia, C., Dong, Y., Zhang, B., Xiao, C., Chen, Y., Wang, Y., Li, X., Wang, L., ZhangB. and LiM.: Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs. Fungal Genetics and Biology.81 (2015) 238249. PMid:25711686; 10.1016/j.fgb.2015.02.008Search in Google Scholar PubMed

12. Walker, E. B.: Quaternary Ammonium Compounds. In D. s.Paulson (Ed.), Handbook of topical antimicrobials industrial applications in consumer products and pharmaceuticals, (2003) (pp. 100117); Marcel Dekker, Inc.10.1201/9780203909256.ch5Search in Google Scholar

13. Lomax, E. G.: Amphoteric Surfactants, Second Edition. (1996) CRC Press.Search in Google Scholar

14. Qu, G., Cheng, J., Wei, J., Yu, T., Ding, W. and Luan, H.: Synthesis, characterization and surface properties of series sulfobetaine surfactants. J Surfact Deterg14 (2011) 3135. 10.1007/s11743-010-1212-9Search in Google Scholar

15. Wydro, P. and Paluch, M.: A study of the interaction of dodecylsulfobetaine with cationic and anionic surfactant in mixed micelles and monolayers at the air/water interface, J Colloid Interface Sci.286(1) (2005) 387391. PMid:15848442; 10.1016/j.jcis.2004.12.039Search in Google Scholar PubMed

16. Chen, S., Chen, S., Jiang, S., Mo, Y., Luo, J. and Tang, J.: Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials, Colloids Surf B.85(2) (2011) 323329. PMid:21450443; 10.1016/j.colsurfb.2011.03.004Search in Google Scholar PubMed

17. Ward, M., Sanchez, M., Elasri, M. O. and Lowe, A. B.: Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria, J Appl Polymer Sci.101(2) (2006) 10361041. 10.1002/app.23269Search in Google Scholar

18. Wieczorek, D., Dobrowolski, A., Staszak, K., Kwaśniewska, D. and Dubyk, P.: Synthesis, surface and antimicrobial activity of piperidine-based sulfobetaines, Journal of surfactants and detergents.20(1) (2017) 151158. PMid:28111518; 10.1007/s11743-016-1906-8Search in Google Scholar PubMed PubMed Central

19. Staszak, K., Wieczorek, D. and Zielinski, R.: Synthesis and interfacial activity of novel sulfobetaines in aqueous solutions, Tenside Surfactants Detergents.50(1) (2013) 4551. 10.3139/113.110233Search in Google Scholar

20. Odds, F. C., Brown, A. J. and Gow, N. A.: Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biol.5 (2004) 230. PMid:15239821; 10.1186/gb-2004-5-7-230Search in Google Scholar PubMed PubMed Central

21. White T. C. : Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother.41 (1997)148214827. PMid:9210670; 10.1128/AAC.41.7.1482Search in Google Scholar PubMed PubMed Central

22. Garcia-Effron G. , ParkS. and PerlinD. S.: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother.53 (2009) 11222. PMid:18955538; 10.1128/AAC.01162-08Search in Google Scholar

23. Perfect JR ., KetabchiN., CoxG. M., IngramC. W. and BeiserC. L.: Karyotyping of Cryptococcus neoformans as an epidemiologic tool. Journal of Clinical Microbiology.31 (1993) 330533099. PMid:8308124; 10.1128/JCM.31.12.3305-3309.1993Search in Google Scholar

24. Hugo, W. B., Ayliffe, G. A. J. and Russell, A. D.: (Eds.): Principles and Practice of Disinfection, Preservation, and Sterilisation. (1999) Blackwell Science.Search in Google Scholar

25. Schep, L. J., Jones, D. S. and Shepherd, M. G.: Primary interactions of three quaternary ammonium compounds with blastospores of Candida albicans (MEN strain), Pharmaceutical research.12(5) (1995) 649652. PMid:7479547; 10.1023/A:1016291021552Search in Google Scholar

26. Chapman, J. S.: Biocide resistance mechanisms. International Biodeterioration & Biodegradation.51(2) (2003) 133138. 10.1016/S0964-8305(02)00097-5Search in Google Scholar

27. Revie, N. M., Iyer, K. R., Robbins, N. and Cowen, L. E.: Antifungal drug resistance: evolution, mechanisms and impact, Current opinion in microbiology.45 (2018) 7076. PMid:29547801; 10.1016/j.mib.2018.02.005Search in Google Scholar PubMed PubMed Central

28. Perlin, D. S.: Resistance to echinocandin-class antifungal drugs, Drug Resistance Updates.10(3) (2007) 121130. PMid:17569573; 10.1016/j.drup.2007.04.002Search in Google Scholar PubMed PubMed Central

29. Campoy, S. and Adrio, J. L.: Antifungals, Biochemical pharmacology.133 (2017) 8696. PMid:27884742; 10.1016/j.bcp.2016.11.019Search in Google Scholar PubMed

30. He, J., Söderling, E., Österblad, M., Vallittu, P. K. and Lassila, L. V. J.: Synthesis of methacrylate monomers with antibacterial effects against S. Mutans, Molecules.16(11) (2011) 97559763. PMid:22113583; 10.3390/molecules16119755Search in Google Scholar PubMed PubMed Central

31. Ghumare, A. K., PawarB. V. and BhagwatS. S.: Synthesis and Antibacterial Activity of Novel Amido-Amine-Based Cationic Gemini Surfactants, Journal of Surfactants and Detergents.16(1) (2012) 8593. 10.1007/s11743-012-1406-4Search in Google Scholar

32. Lu, G., Wu, D. and Fu, R.: Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate, Reactive and Functional Polymers.67(4) (2007) 355366. 10.1016/j.reactfunctpolym.2007.01.008Search in Google Scholar

33. Nihei, K., Nihei, A. and Kubo, I.: Rational design of antimicrobial agents: antifungal activity of alk(en)yl dihydroxybenzoates and dihydroxyphenyl alkanoates, Bioorganic & Medicinal Chemistry Letters.13(22) (2003) 39933996. PMid:14592492; 10.1016/j.bmcl.2003.08.057Search in Google Scholar PubMed

34. Lukáč, M., Mrva, M., Garajová, M., Mojžišová, G., Varinská, L., Mojžiš, J., Sabol, M., Kubincová, J., Haragová, H., Ondriska, F. and Devínsky, F.: (2013). Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. European journal of medicinal chemistry.6620134655. PMid:23792315; 10.1016/j.ejmech.2013.05.033Search in Google Scholar PubMed

Received: 2019-06-05
Accepted: 2019-10-28
Published Online: 2020-03-09
Published in Print: 2020-03-16

© 2020, Carl Hanser Publisher, Munich

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/113.110667/html
Scroll to top button