Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2019

Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions

Veresterung von Ölsäure mit n-Octanol in dreiphasigen Mikroemulsionen
  • Yongjun Zheng , Yong Zheng , Zhen Wang and Haixiang Song

Abstract

In the presence of dodecylbenzene sulfonic acid (DBSA), a part of the phase diagram of water, oleic acid, and n-octanol was constructed as a function of the temperaure dependent from DBSA-concentration. The liquid three-phases microemulsion region in the phase diagram was efficient for the esterification of oleic acid and n-octanol. The results exhibit that the shift of phase boundary contributed to product separation and catalyst recycling.

Kurzfassung

In Gegenwart von Dodecylbenzensulfonsäure (DBSA) wurde das Teilphasendiagramm von Wasser, Ölsäure und n-Octanol als Funktion der Temperatur in Abhängigkeit von der DBSA-Menge konstruiert. Der Bereich der flüssigen Dreiphasen-Mikroemulsion im Phasendiagramm war für die Veresterung von Ölsäure und n-Octanol wirksam. Die Ergebnisse zeigen, dass die Verschiebung der Phasengrenze zur Produkttrennung und zur Katalysatorrückgewinnung beitrug.


Correspondence address, Dr. Yongjun Zheng, Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China, Tel.: +86-03722909693, E-Mail:

Yongjun Zheng received his Ph. D. from the Graduate University of Chinese Academy of Science in 2009. He is now a teacher in the Anyang Institute of Technology. His research interest focuses on the area of microemulsion and micellar catalysis.

Yong Zheng received his Ph. D. from the University of Chinese Academy of Sciences in 2013, He is now a teacher in the Anyang Institute of Technology. His research interest focuses on the area of ionic liquid.

Zhen Wang was obtained his Ph. D. from the NanKai University in 2014. His research focused on the area of organic chemistry.

Haixiang Song received his Ph. D. from the Beijing Institute of Technology in 2001, Her research has focused on polymer nanomaterials.


References

1. Menger, F. M. and Elrington, A. R.: Organic reactivity in microemulsion systems, J. Am. Chem. Soc.113 (1991) 96219624. 10.1021/ja00025a030Search in Google Scholar

2. Nardello-Rataj, V., Caron, L., Borde, C. and Aubry, J.-M.: Oxidation in Three-Liquid-Phase Microemulsion Systems Using “Balanced Catalytic Surfactants”, J. Am. Chem. Soc.130 (2008) 1491414915. PMid:18855468; 10.1021/ja805220pSearch in Google Scholar PubMed

3. Han, Y. and Chu, Y.: The catalytic properties and mechanism of cyclohexane/DBSA/water microemulsion system for esterification, J. Mol. Catal. A: Chem.237 (2005) 232237. 10.1016/j.molcata.2005.04.058Search in Google Scholar

4. Manabe, K., Iimura, S., Sun, X.-M. and Kobayashi, S.: Dehydration Reactions in Water. Dehydration Reactions in Water. Br⊘nsted Acid Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water, J. Am. Chem. Soc.124 (2002) 1197111978. PMid:12358542; 10.1021/ja026241jSearch in Google Scholar PubMed

5. Nowothnick, H., Blum, J. and Schomäcker, R.: Suzuki Coupling Reactions in Three-Phase Microemulsions, Angew. Chem. Int. Ed50 (2011) 19181921. PMid:21328670; 10.1002/anie.201005263Search in Google Scholar PubMed

6. Laudani, C. G., Habulin, M., Primožič, M., Knez, Ž., Della Porta, G. and Reverchon, E.: Optimisation of n-octyl oleate enzymatic synthesis over Rhizomucor miehei lipase, Bioproc. Biosyst. Eng.29 (2006) 119127. PMid:16770594; 10.1007/s00449-006-0061-4Search in Google Scholar PubMed

7. Zheng, Y. and Eli, W.: Study on the Polarity of bmimPF6/Tween80/toluene Microemulsion Characterized by UV-Visible Spectroscopy, J. Disper. Sci. Technol.30 (2009) 698703. 10.1080/01932690802553890Search in Google Scholar

8. Zheng, Y., Meng, F. and Liu, M.: Surfactant-free Ionic Liquid Microemulsions of N,N-dimethylformamide, 1-butyl-3-methylimidazolium hexafluorophosphate, and toluene, J. Disper. Sci. Technol.36 (2015) 16071611. 10.1080/01932691.2014.982285Search in Google Scholar

9. Zheng, Y. and Zheng, Y.: Effect of Alcohols on Phase Stability of Ionic Liquid Microemulsions, Tenside Surfact. Det.52 (2015) 362368. 10.3139/113.110386Search in Google Scholar

10. Zheng, Y., Zheng, Y., Wang, Z., Cao, Y., Shao, Q. and Guo, Z.: Sodium dodecyl benzene sulfonate-catalyzed reaction for aromatic aldehydes with 1-phenyl-3-methyl-5-pyrazolone in aqueous media, Green Chem. Lett. Rev.11 (2018) 217223. 10.1080/17518253.2018.1465600Search in Google Scholar

11. Zheng, Y., Zheng, Y., Yang, S., Guo, Z., Zhang, T., Song, H. and Shao, Q.: Esterification synthesis of ethyl oleate catalyzed by Br⊘nsted acid Surfactant-combined ionic liquid, Green Chem. Lett. Rev.10 (2017) 202209. 10.1080/17518253.2017.1342001Search in Google Scholar

12. Fan, L., Eli, W. and Yang, S.: Esterification of Octanoic Acid with Octanol in Microemulsion and Emulsion System, J. Disper. Sci. Technol.29 (2008) 880884. 10.1080/01932690701783184Search in Google Scholar

13. Winsor, P. A.: Hydrotropy, solubilisation and related emulsification processes, Trans. Faraday Soc.44 (1948) 376398. 10.1039/tf9484400376Search in Google Scholar

14. Gang, L., Xinzong, L., Eli, W.: Solvent-free esterification catalyzed by surfactant-combined catalysts at room temperature, New J. Chem.31 (2007) 348351. 10.1039/b615448dSearch in Google Scholar

15. Manabe, K. X.-M. and Sun, S.: Kobayashi, Dehydration Reactions in Water. Surfactant-Type Br⊘nsted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System, J. Am. Chem. Soc.123 (2001) 1010110102. PMid:11592891; 10.1021/ja016338qSearch in Google Scholar PubMed

16. Han, M., Yi, W., Wu, Q., Liu, Y., Hong, Y. and Wang, D.: Preparation of biodiesel from waste oils catalyzed by a Br⊘nsted acidic ionic liquid, Bioresource Techn.100 (2009) 23082310. 10.1016/j.biortech.2008.10.046Search in Google Scholar PubMed

17. Liang, X., Gong, G., Wu, H. and Yang, J.: Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst, Fuel88 (2009) 613616. 10.1016/j.fuel.2008.09.024Search in Google Scholar

18. Behr, A., Henze, G., Johnen, L. and Awungacha, C.: Advances in thermomorphic liquid/liquid recycling of homogeneous transition metal catalysts, J. Mol. Catal. A: Chem.285 (2008) 2028. 10.1016/j.molcata.2008.01.021Search in Google Scholar

19. Milano-Brusco, J. S., Nowothnick, H., Schwarze, M. and Schomäcker, R.: Catalytic Reactions in Surfactant Systems:Product Isolation and Catalyst Recycling, Ind. Eng. Chem. Res.49 (2010) 10981104. 10.1021/ie900753tSearch in Google Scholar

20. Shimizu, S., Shimada, N. and Sasaki, Y.: Mannich-type reactions in water using anionic water-soluble calixarenes as recoverable and reusable catalysts, Green Chem.8 (2006) 608614. 10.1039/b603962fSearch in Google Scholar

Received: 2018-07-17
Accepted: 2018-11-12
Published Online: 2019-03-07
Published in Print: 2019-03-15

© 2019, Carl Hanser Publisher, Munich

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.3139/113.110608/html
Scroll to top button