Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 1, 2013

Lyotropic Liquid Crystals Formed in Brij35/Copolymer/Water System

Lyotrope Flüssigkristalle im System Brij35/Copolymer/Wasser
  • Zhongni Wang , Feng Liu , Tandong Zhang , Xilian Wei , Wu Zhou and Xiaolu Tang

Abstract

Phase diagram of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) copolymer (AL-64) and nonionic surfactant dodecyl polyoxyethylene (23) ether (Brij 35) aqueous solutions has been determined at 25°C using the titration method. Hexagonal, cubic and two lamellar liquid crystalline phases were found and characterized by use of polar optical microscopy and small-angle X-ray scattering (SAXS) techniques. Dynamic rheological measurements were further performed on the found liquid crystals. It has been shown that the cubic and lamellar phases exhibit elastic properties, while the hexagonal phase presents viscoelastic properties. At the constant water content, with increase in the concentration of the copolymer AL-64, the rheological G′ and G″ moduli, the critical shear stress and the network strength of the hexagonal liquid crystals get decreased. The two lamellar phases exhibit clearly different rheological properties, and the lamellar phase lies in Brij35 rich side possess stronger network strength than the hexagonal phase, through the rheological data analyses.

Kurzfassung

Das Phasendiagramm für das System Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Copolymer, AL-64), Dodecylpolyoxyethylene-(23)-ether (Brij 35, kationischen Tensid) und Wasser wurde bei 25°C mit der Titrationsmethode bestimmt. Eine hexagonale, eine kubische und zwei lamellare flüssigkristalline Phasen wurden entdeckt und mittels Polarisationsmikroskopie und Röntgenkleinwinkelstreuung (SAXS) charakterisiert. Des Weiteren wurden dynamische rheologische Messungen an diesen gebildeten Flüssigkristallen durchgeführt. Es konnte gezeigt werden, dass die kubische und die lamellare Phasen elastische Eigenschaften haben, während die hexagonale Phase viskoelastische Eigenschaften hat. Bei konstantem Wasseranteil und steigender Konzentration des Copolymers AL-64 nehmen die rheologischen Module G′ und G″, die kritische Scherspannung und die Vernetzungsstärke der hexagonalen Flüssigkristallphase ab. Die beiden lamellaren Phasen zeigen deutlich unterschiedliche rheologische Eigenschaften. Die lamellare Phase, die auf der Brij35-reichen Seite liegt, hat eine höhere Vernetzungsstärke als die hexagonale Phase, so die Analyse der rheologischen Daten.


4 Professor Zhongni Wang, Ph.D., College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China, Tel.: 86-531-86182546. E-mail:

Dr. Zhongni Wang received her B.Sc. degree from Jilin University, and her M.Sc. and Ph.D. degrees from Shandong University in China. She worked with Professor Rosen at the Surfactant Research Institute of Brooklyn College from November 1997 until November 1998. She is now professor at the College of Chemistry, Chemical Engineering and Materials Science at Shandong Normal University in China and her research field is surfactants.

Dr. Feng Liu is a researcher in the Test Center of Shandong Academy of Sciences in China. He received his Ph.D. degree from Jiangnan University and his current research field is food chemistry.

Tandong Zhang was chemistry undergraduate student in the College of Chemistry and Chemical Engineering, Liaocheng University in China.

Xilian Wei is a professor in the College of Chemistry and Chemical Engineering, Liaocheng University in China with a research field in colloid and interface chemistry.

Wu Zhou is a senior experimentalist in the College of Chemistry, Chemical Engineering and Materials Science at Shandong Normal University in China with a research field in colloid and interface chemistry.

Xiaolu Tang is a graduate student, majoring in the physical chemistry of surfactants, in the College of Chemistry, Chemical Engineering and Materials Science at Shandong Normal University in China.


References

1. Larsen, D. W., Friberg, S. E. and Christenson, H.: J. Am. Chem. Soc.102(1980)6565.10.1021/ja00541a035Search in Google Scholar

2. Alfaro, M. C., Cuerrero, A. F. and Munoz, J.: Langmuir.16(2000)4711.10.1021/la9912040Search in Google Scholar

3. Gillberg, G., Lehtinen, H. and Friberg, S. E.: J. Colloid Interface Sci.33(1970)40.10.1016/0021-9797(70)90070-6Search in Google Scholar

4. Friberg, S. E., Mandell, L. and Larsson, M.: J. Colloid Interface Sci.29(1969)155.10.1016/0021-9797(69)90357-9Search in Google Scholar

5. Friberg, S. E. and Ahmad, S. I.: J. Colloid Interface Sci.35(1971)175.10.1016/0021-9797(71)90204-9Search in Google Scholar

6. Kekicheff, P. and Tiddy, G. J. T.: J. Phys. Chem.93(1989)2520.10.1021/j100343a056Search in Google Scholar

7. Partal, P., Kowalski, A. J., Machin, D. and Kiratzis, N.: Langmuir.17(2001)1331.10.1021/la0007731Search in Google Scholar

8. Palmqvist, A. E. C.: Curr Opin in Colloid Interface Sci.8(2003)145.10.1016/S1359-0294(03)00020-7Search in Google Scholar

9. Nesseem, D. I.: J. Pharmaceutics &Biomedical Annlysis.26(2001)387.10.1016/S0731-7085(01)00414-9Search in Google Scholar

10. Amar-Yuli, I., Libster, D., Aserin, A. and Garti, N.: Curr Opin in Colloid Interface Sci.14(2009)21.10.1016/j.cocis.2008.02.001Search in Google Scholar

11. Rosen, M.J.: Surfactants and interfacial phenomena, 3rd edition, John Willy & Sons, New York. (2004)395.10.1002/9781118228920Search in Google Scholar

12. Zhang, R., Zhang, L. and P. J.Somasundaran: J. Colloid Interface Sci.278(2004)453.10.1016/j.jcis.2006.05.062Search in Google Scholar

13. Kaler, E. W., Murthy, K., Rodriguez, B. E. and Zasadzinske, J. A. N.: Science.245(1989)1371.10.1097/00041327-199506000-00014Search in Google Scholar

14. Amado, E. and Kressler, J.: Curr Opin in Colloid Interface Sci.16(2011)491.10.1016/j.cocis.2011.07.003Search in Google Scholar

15. Aramaki, K., Hsooain, Md. K., Rodriguez, C.Uddin, Md. H. and Kunieda, H.: Macromolecules.36(2003)9443.10.1021/ma0350664Search in Google Scholar

16. Horanyi, T., Halasz, L., Palinkas, J. and Nemeth, Zs.: Langmuir.20(2004)1639.10.1016/S0040-6090(98)00666-XSearch in Google Scholar

17. Wang, Z. N., Meng, L., Zhou, W., Wang, Z. W., Liu, F., Li, G. Z. and G. Y.Zhang: J. Dispersion Science and Technology.29(2008)313.10.1080/01932690701716002Search in Google Scholar

18. Dimitrova, G. T., Tadros, Th. F. and Luckham, P. F.: Langmuir.11(1995)1101.10.1088/1742-6596/44/1/023Search in Google Scholar

19. Cordobes, F., Munoz, J. and Gallegos, C.: J. Colloid Interface Sci.187(1997)401.10.1006/jcis.1996.4707Search in Google Scholar PubMed

20. Yariv, D., Efrat, R., D.Libster and Aserin, A.: Colloids and Surfaces B: Biointerfaces.78(2010)185.10.1016/j.colsurfb.2010.02.029Search in Google Scholar PubMed

21. Youssry, M., Coppola, L., Nicotera, I. and Morán, C.: J. Colloid Interface Sci.321(2008)459.10.1016/j.jcis.2008.02.023Search in Google Scholar PubMed

22. Lauger, J., Weigel, R., Berger, K., Hiltrop, K. and Richtering, W.: J. Colloid Interface Sci.181(1996)521.10.1006/jcis.1996.0409Search in Google Scholar

23. Durrschmidt, T. and Hoffman, H.: Colloid Polym Sci.279(2001)1005.10.1007/s003960100532Search in Google Scholar

24. Wang, Z., Liu, F., Gao, Y., Zhuang, W., Xu, L., Han, B., Li, G. and Zhang, G.: Langmuir.21(2005)4931.10.1021/la050266pSearch in Google Scholar PubMed

25. Galatanu, A. N., Chronakis, I. S., Anghel, D. F. and Khan, A.: Langmuir.16(2000)4922.10.1021/la991668ySearch in Google Scholar

Received: 2011-12-27
Revised: 2012-01-26
Published Online: 2013-03-01
Published in Print: 2012-05-01

© 2012, Carl Hanser Publisher, Munich

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/113.110186/html
Scroll to top button