Skip to main content
Log in

Synthesis of Composites with a Change in the Stress–Strain State under Laser Initiation

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

A coupled model of solid-phase combustion was formulated for the conditions of plane stressed and plane deformed state. It was shown that the influence of coupling on the stationary combustion wave in these two cases exhibits different effects, which is reflected in the change in the effective parameters. The possibility of synthesizing in situ composites of Al–Ni–Fe2O3 and Al–Ti–Cr2O3 mixtures on a substrate, which responded differently to changes in the reaction conditions, was demonstrated. Laser radiation was used to initiate combustion. It is possible that continuous control of laser radiation will stabilize the process when the reaction conditions change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Armstrong, M., Mehrabi, H., and Naveed, N., An overview of modern metal additive manufacturing technology, J. Manuf. Process., 2022, vol. 84, pp. 1001–1029. https://doi.org/10.1016/j.jmapro.2022.10.060

    Article  Google Scholar 

  2. Moeinfar, K., Khodabakhshi, F., Kashani-bozorg, S., Mohammadi, M., and Gerlich, A., A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys, J. Mater. Res. Technol., 2021, vol. 16, pp. 1029–1068. https://doi.org/10.1016/j.jmrt.2021.12.039

    Article  CAS  Google Scholar 

  3. Korotkevich, I., Khil’chenko, G., Polunina, G., and Vidavskii, L., Initiation of self-propagating high-temperature synthesis reactions by pulsed laser radiation, Combust., Explos. Shock Waves, 1981, vol. 17, no. 5, pp. 535–540. https://doi.org/10.1007/BF00798141

    Article  Google Scholar 

  4. Spitsyn, V. I. and Vidavskiĭ, L., Behavior of a condensed reactive exothermic system under conditions of pulsed heating by a light flux, Sov. J. Quantum Electron., 1986, vol. 16, no. 1, p. 68–75. https://doi.org/10.1070/QE1986v016n01ABEH005177

    Article  Google Scholar 

  5. Srivastava, M., Rathee, S., Patel, V., Kumar, A., and Koppad, P., A review of various materials for additive manufacturing: Recent trends and processing issues, J. Mater. Res. Technol., 2022, vol. 21, pp. 2612–2641. https://doi.org/10.1016/j.jmrt.2022.10.015

    Article  CAS  Google Scholar 

  6. Shishkovsky, I., Laser-Controlled Intermetallics Synthesis during Surface Cladding, Laser Surface Engineering: Prosesses and Aplications, Lawrence, J. and Waugh, D.G., Eds., 2015, pp. 237–286. https://doi.org/10.1016/B978-1-78242-074-3.00011-8

  7. Khaimovich, A., Erisov, Y., Agapovichev, A., Shishkovsky, I., Smelov, V., and Razzhivin, V., Practical approbation of thermodynamic criteria for the consolidation of bimetallic and functionally gradient materials, Metals, 2021, vol. 11, no. 12, p. 1960. https://doi.org/10.3390/met11121960

    Article  CAS  Google Scholar 

  8. Zhang, X., Li, D., Zheng, Y., Shojaei, P., Trabia, M., O’Toole, B., Lin, D., Mushongera, L., and Liao, Y., In-situ synthesis of Ti5Si3-reinforced titanium matrix nanocomposite by selective laser melting: Quasi-continuous reinforcement network and enhanced mechanical performance, J. Mater. Process. Technol., 2022, vol. 309, p. 117752. https://doi.org/10.1016/j.jmatprotec.2022.117752

    Article  CAS  Google Scholar 

  9. Yi, J., Zhang, X., Rao, J. H., Xiao, J., and Jiang, Y. In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2 + TiC)/AlSi10Mg composites prepared by SLM-CS processing, J. Alloy Compd., 2021, vol. 857, p. 157553. https://doi.org/10.1016/j.jallcom.2020.157553

    Article  CAS  Google Scholar 

  10. Knyazeva, A.G. and Bukrina, N.V., A coupled model of composite synthesis in combustion regime, Combust. Theor. Model., 2022, vol. 26, no. 1, pp. 152–178. https://doi.org/10.1080/13647830.2021.1996634

    Article  CAS  Google Scholar 

  11. Knyazeva, A. and Kryukova, O., A coupled model of controlled synthesis, of a composite on a substrate, Lobachevskii J. Math., 2022, vol. 43, no. 7, pp. 1878–1893. https://doi.org/10.1134/S1995080222100183

    Article  Google Scholar 

  12. Knyazeva, A.G., Thermal-mechanical stability of solid-phase conversion front to two-dimensional perturbations, Вестник пермского государственного технического университета. Механика, 2011, no. 4, pp. 88–123.

  13. Emanuel, N.M. and Knorre, D.G., Chemical Kinetics: Homogeneous Reactions, New York: Wiley, 1973.

    Google Scholar 

  14. Knyazeva, A., Hot-spot thermal explosion in deformed solids, Combust. Explos. Shock Waves, 1993, vol. 29, no. 4, pp. 419–428. https://doi.org/10.1007/BF00782966

    Article  Google Scholar 

  15. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, New York: Dover, 2011, 608 p.

    Google Scholar 

  16. Timokhin, A.M. and Knyazeva, A.G., Modes of reaction front propagation in coupled thermal-mechanical model of solid-phase combustion, Химическая физика, 1996, vol. 15, no. 10, pp. 85–100.

    CAS  Google Scholar 

  17. Knyazeva, A.G., Stationary model of solid-phase combustion in terms of thermal stresses. Asymptotic analysis, Физическая мезомеханика, 2006, vol. 7, no. 3, pp. 63–70.

  18. Krishenik, P.M., Kostin, S.V., and Rogachev, A.S., Combustion wave stability in transition through the interface of gasless systems, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 4, pp. 677–683. https://doi.org/10.1134/S1990793118040255

    Article  CAS  Google Scholar 

  19. Strunina, A.G., Firsov, A.N., and Kostin,S.V., Transition modes in the combustion of heterogeneous systems with solid-phase products, Combust., Explos. Shock Waves, 1981, vol. 17, no. 5, pp. 500–505. https://doi.org/10.1007/BF00798134

    Article  Google Scholar 

  20. Vadchenko, S., Merzhanov, A., Mukasyan, A., and Sychev, A., Effect of uniaxial loading on the macrokinetics of combustion of gasless systems, Dokl. Akad. Nauk SSSR, 1994, vol. 337, pp. 618–621.

    CAS  Google Scholar 

  21. Kamynina, O., Rogachev, A., and Umarov, L., Deformation dynamics of a reactive medium during gasless combustion, Combust. Explos. Shock Waves, 2003, vol. 39, no. 5, pp. 548–551. https://doi.org/10.1023/A:1026161818701

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (RFBR) (grant no. 20-03-00303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krinitcyn.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, A., Krinitcyn, M. Synthesis of Composites with a Change in the Stress–Strain State under Laser Initiation. Int. J Self-Propag. High-Temp. Synth. 32, 117–125 (2023). https://doi.org/10.3103/S1061386223020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386223020048

Keywords:

Navigation