Skip to main content
Log in

A Coupled Model of Controlled Synthesis, of a Composite on a Substrate

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A mathematical model of the process of composite synthesis from a mixture of powders is formulated. It is assumed that the synthesis is performed on a substrate and is controlled by a scanning laser beam. The stress-strain state is described in quasi-static approximation. The model takes into account two phenomena that are neglected in traditional surface treatment and 3D models: the mutual influence of the heat transfer process and deformation and the heat sources and sinks that result from chemical reactions. The formation of the composition is described by a total reaction scheme that includes a strengthening particle formation stage and a matrix formation stage. The nonlinear model is reduced to a dimensionless form and investigated numerically using an implicit difference scheme for the thermal conductivity equation, the semi-implicit Euler method for the kinetic equations, and the iteration procedure for the mechanical equilibrium problem. As a result of the calculations, we have the fields of temperature, concentrations, stresses, and strains at an arbitrary moment of time, as well as the final composition of the composite. It is shown that the coupling of processes of different physical nature is important both for determining the composition of the composite and for estimating the residual stresses and strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. O. R. Hachkevych and R. M. Kushnir, ‘‘Selected problems of the mechanics of coupled fields,’’ J. Math. Sci. 229, 115–132 (2018).

    Article  MathSciNet  Google Scholar 

  2. B. Gatzhammer, M. Mehl, and T. Neckel, ‘‘A coupling environment for partitioned multiphysics simulations applied to fluid-structure interaction scenarios,’’ Proc. Comput. Sci. 1, 681–689 (2010).

    Article  Google Scholar 

  3. M. Errera, A. Dugeai, P. Girodroux-Lavigne, J. D. Garaud, M. Poinot, et al., ‘‘Multi-physics coupling approaches for aerospace numerical simulations,’’ hal-01182439 (2011).

  4. J. P. Sheldon, S. T. Miller, and J. S. Pitt, ‘‘Methodology for comparing coupling algorithms for fluid-structure interaction problems,’’ World J. Mech. 4, 54–70 (2014).

    Article  Google Scholar 

  5. H. Niu, Z. Chen, H. Zhang, X. Luo, X. Zhuang, X. Li, and B. Yang, ‘‘Multi-physical coupling field study of 500 kV GIL: Simulation, characteristics, and analysis,’’ IEE Access 8, 131439–131448 (2020).

    Article  Google Scholar 

  6. M. Bogdanova, S. Belousov, I. Valuev, A. Zakirov, M. Okun, D. Shirabaykin, V. Chorkov, P. Tokar, A. Knizhnik, B. Potapkin, A. Bagaturyants, K. Komarova, M. N. Strikhanov, A. A. Tishchenko, V. R. Nikitenko, et al., ‘‘Simulation platform for multiscale and multiphysics modeling of OLEDs,’’ Proc. Comput. Sci. 29, 740–753 (2014).

    Article  Google Scholar 

  7. Z. Yuan and J. Fish, ‘‘Nonlinear multiphysics finite element code architecture in object oriented Fortran environment,’’ Finite Elem. Anal. Des. 99, 1–15 (2015).

    Article  Google Scholar 

  8. Sh. R. Narasimharaju, W. Zeng, T. L. See, Z. Zhu, P. Scott, X. Jiang (Jane), and Sh. Lou, ‘‘A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends,’’ J. Manuf. Processes 75, 375–414 (2022).

    Article  Google Scholar 

  9. A. Bhatia and A. K. Sehgal, ‘‘Additive manufacturing materials, methods and applications: A review,’’ Mater. Today: Proc.

  10. Song Bo, Shifeng Wen, Chunze Yan, Qingsong Wei, and Yusheng Shi, Selective Laser Melting for Metal and Metal Matrix Composites (Academic, Elsevier, 2020).

    Google Scholar 

  11. Ch. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, ‘‘Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation, and experimentation,’’ Ann. Rev. Heat Transfer 20, 241–316 (2017).

    Article  Google Scholar 

  12. Ch.-m. Liu, H.-b. Gao, L.-yu Li, J.-d. Wang, Ch.-h. Guo, and F.-ch. Jiang, ‘‘A review on metal additive manufacturing: Modeling and application of numerical simulation for heat and mass transfer and microstructure evolution,’’ China Foundry 18 (4), 317–334 (2021).

    Article  Google Scholar 

  13. Y. Yanga, X. Zhouc, Q. Lid, and C. Ayase, ‘‘A computationally efficient thermo-mechanical model for wire arc additive manufacturing,’’ Addit. Manuf. 46, 102090 (2021).

    Google Scholar 

  14. B. K. Nagesha, S. Anand Kumar, K. Vinodh, A. Pathania, and S. Barad, ‘‘A thermo-mechanical modelling approach on the residual stress prediction of SLM processed HPNGV aeroengine part,’’ Mater. Today: Proc. 44, 4990–4996 (2021).

    Google Scholar 

  15. P. A. Pidge and H. Kumar, ‘‘Additive manufacturing: A review on 3D printing of metals and study of residual stress, buckling load capacity of strut members,’’ Mater. Today: Proc. 21, 1689–1694 (2020).

    Google Scholar 

  16. S. Liu, H. Zhu, G. Peng, J. Yin, and X. Zeng, ‘‘Microstructure prediction of selective laser Melting AlSi10Mg using finite element analysis,’’ Mater. Des. 142, 319–328 (2018).

    Article  Google Scholar 

  17. R. Tangestani, T. Sabiston, A. Chakraborty, L. Yuan, N. Krutz, and E. Martin, ‘‘An efficient track-scale model for laser powder bed fusion additive manufacturing, Part 2: Mechanical model,’’ Front. Mater. 8, 759669 (2021).

    Article  Google Scholar 

  18. H. Jia, H. Suna, H. Wang, Y. Wu, and H. Wang, ‘‘Size effect in selective laser melting additive manufacturing of 700 mm large component,’’ J. Manuf. Processes 75, 125–137 (2022).

    Article  Google Scholar 

  19. L. Liang, R. Hu, J. Wang, A. Huang, and Sh. Pang, ‘‘A thermal fluid mechanical model of stress evolution for wire feeding-based laser additive manufacturing,’’ J. Manuf. Process. 69, 602–612 (2021).

    Article  Google Scholar 

  20. S. N. Sorokova and A. G. Knyazeva, ‘‘Numerical study of the influence of the technological parameters on the composition and stressed deformed state of a coating synthesized under electron beam heating,’’ Theor. Found. Chem. Eng. 44, 172–185 (2010).

    Article  Google Scholar 

  21. Zh. Zhang, Y. Huang, A. R. Kasinathan, Sh. I. Shahabad, U. Ali, Y. Mahmoodkhani, and E. Toyserkan, ‘‘3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity,’’ Opt. Laser Technol. 109, 297–312 (2019).

    Article  Google Scholar 

  22. N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Material Processing, The Handbook (Mir, Moscow, 1988).

  23. A. G. Knyazeva and O. N. Kryukova, ‘‘The synthesis of composites with reinforcing particles on a thin substrate,’’ Mater. Phys. Mech. 47, 254–265 (2021).

    Google Scholar 

  24. A. G. Knyazeva, ‘‘Hot-spot thermal explosion in deformed solids,’’ Combust. Explos. Shock Waves 29, 419–428 (1993).

    Article  Google Scholar 

  25. S. V. Kalinin, A. A. Vertegel, N. N. Oleynikov, et al., ‘‘Kinetics of solid state reactions with fractal reagent,’’ J. Mater. Synth. Process. 6, 305–309 (1998).

    Article  Google Scholar 

  26. Y. D. Tretyakov and E. A. Goodilin, ‘‘Chemical principles of preparation of metal-oxide superconductors,’’ Russ. Chem. Rev. 69, 1–34 (2000).

    Article  Google Scholar 

  27. V. I. Volkov, Y. D. Tret’yakov, V. V. Klimov, et al., ‘‘Effect of the history of nickel oxide on the process of ferrite formation,’’ Powder Metall. Met. Ceram. 10, 283–288 (1971).

    Article  Google Scholar 

  28. W. E. Brown, D. Dollimore, and A. K. Galwey, ‘‘Reactions in the solid state,’’ in Comprehensive Chemical Kinetics, Ed. by C. H. Bamford and F. H. Tipper (Elsevier, Amsterdam, 1980), Vol. 22, pp. 1–340.

    Google Scholar 

  29. N. M. Emanuel and D. G. Knorre, Chemical Kinetics (Homogeneous Reactions) (Halsted, New York, 1973).

    Google Scholar 

  30. P. Y. Butyagin, ‘‘Problems in mechanochemistry and prospects for its development,’’ Russ. Chem. Rev. 63, 965–976 (1994).

    Article  Google Scholar 

  31. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  32. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (CRC, Boca Raton, FL, 1997).

    Google Scholar 

  33. J. J. Valencia and P. N. Quested, ASM Handbook, Vol. 15: Casting (ASM Int., Materials Park, OH, 2008).

    Google Scholar 

  34. N. N. Stolovich and N. S. Minitskaya, Temperature Dependence of Thermophysical Properties of Some Metals (Minsk, 1975) [in Russian].

    Google Scholar 

  35. G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer, US, 1968).

    Book  Google Scholar 

  36. A. Knyazeva and O. Kryukova, ‘‘Modeling Ti-Al-C-composite synthesis on a substrate under control of electron beam,’’ J. Cryst. Growth 531, 125349 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 20-03-00303.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Knyazeva or O. N. Kryukova.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, A.G., Kryukova, O.N. A Coupled Model of Controlled Synthesis, of a Composite on a Substrate. Lobachevskii J Math 43, 1878–1893 (2022). https://doi.org/10.1134/S1995080222100183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100183

Keywords:

Navigation