Skip to main content
Log in

Humic Acid Has Protective Effect on Gastric Ulcer by Alleviating Inflammation in Rats

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The new agents are needed in treatment of gastric ulcer that have less side effects, adequate efficacy, and no drug interactions. In this study, we aimed to investigate the potential protective effects of humic acid on experimental gastric ulcer. Wistar Albino male rats (n = 48) were randomly divided into 8 groups as follow; Control (without any applications), Humic acid (50 mg/kg), ethanol group (1 mL/rat), and indomethacin group (25 mg/kg). In the treatment groups, both gastric ulcer model and humic acid 50 mg/kg were applied. In addition, famotidine the antiulcer drug was used as positive control. All medications were administered by oral gavage. Levels of ADAM10 and ADAMTS12 in gastric mucosa were determined by ELISA method. Hematoxylin-Eosin (H&E) staining, iNOS, and PCNA immunohistochemical staining were performed for histopathological investigations. Apoptosis was demonstrated by using the TUNEL method. In addition, the levels of inflammatory cytokines (TNF-α, IL-6, IL-10) and caspase-3 gene were determined by qRT-PCR. ADAM10 and ADAMTS12 levels significantly increased in the treatment groups compared to the ulcer groups (p < 0.05). The experimental groups showed mucosal erosion, bleeding, leukocyte infiltration and edema. Treatment with humic acid and famotidine was found to suppress iNOS activity, thereby decreasing proinflammatory activity and preventing damage to the gastric mucosa, while reducing the number of apoptotic cells. IL-6, IL-10, TNF-α and caspase-3 levels were significantly decreased in the treatment groups compared to damaged gastric mucosa. As a result, humic acid may be defined as a potential protective agent with its anti-inflammatory effect in gastric ulcer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Acharya, S.B., Frotan, M.H., Goel, R.K., et al., Pharmacological actions of Shilajit, Indian J. Exp. Biol., 1988, vol. 26, pp. 775–777. PMID: 3248832.

    CAS  PubMed  Google Scholar 

  2. Almasaudi, S.B., El-Shitany, N.A., Abbas, A.T., et al., Antioxidant, anti-inflammatory, and antiulcer potential of manuka honey against gastric ulcer in rats, Oxid. Med. Cell Longev., 2016, vol. 2016, art. 3643824.https://doi.org/10.1155/2016/364382

    Article  PubMed  Google Scholar 

  3. Antonisamy, P., Duraipandiyan, V., Aravinthan, A., et al., Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms, Eur. J. Pharmacol., 2015, vol. 750, pp. 167–175. https://doi.org/10.1016/j.ejphar.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  4. Arab, H.H., Salama, S.A., Omar, H.A., et al., Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions, PLoS One, 2015, vol. 10, art. e0122417. https://doi.org/10.1371/journal.pone.0122417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aziz, R.S., Siddiqua, A., Shahzad, A., et al., Oxyresveratrol ameliorates ethanol-induced gastric ulcer viadownregulation of IL-6, TNF-α, NF-ĸB, and COX-2 levels, and upregulationof TFF-2 levels, Biomed. Pharmacother., 2019, vol. 110, pp. 554–560. https://doi.org/10.1016/j.biopha.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Bansal, V.K. and Goel, R.K., Gastroprotective effect of Acacia nilotica young seedless pod extract: role of polyphenolic constituents, Asian Pacif. J. Trop. Med., 2012, vol. 5, pp. 523–528. https://doi.org/10.1016/S1995-7645(12)60092-3

    Article  Google Scholar 

  7. Baraka, A.M., Guemei, A., and Gawad, H.A., Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats, Biochem. Pharmacol., 2010, vol. 79, pp. 1634–1639. https://doi.org/10.1016/j.bcp.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Caldas, G.F.R., Oliveira, A.R.D.S., Araújo, A.V., et al., Gastroprotective and ulcer healing effects of essential oil of Hyptis martiusii Benth. (Lamiaceae), PLoS One, 2014, vol. 9, art. e84400. https://doi.org/10.1371/journal.pone.0084400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang, X., Luo, F., Jiang, X., et al., Protective activity of salidro side against ethanol-induced gastric ulcer via the MAPK/NF-휅B pathway in vivo and in vitro, Int. Immunopharmacol., 2015, vol. 28, pp. 604–615. https://doi.org/10.1016/j.intimp.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  10. Chow, D.K. and Sung, J.J., Non-NSAID non-H. pylori ulcer disease, Best Pract. Res. Clin. Gastroenterol., 2009, vol. 23, pp. 3–9. https://doi.org/10.1016/j.bpg.2008.11.010

    Article  PubMed  Google Scholar 

  11. DeVault, R.K. and Talley, N.G., Insights into the future of gastric acid suppression, Nat. Rev. Gastroenterol. Hepatol., 2009, vol. 6, pp. 524–532. https://doi.org/10.1038/nrgastro.2009.125

    Article  CAS  PubMed  Google Scholar 

  12. El-Maraghy, S.A., Rizk, S.M., and Shahin, N.N., Gastroprotective effect of crocin in ethanol- induced gastric injury in rats, Chem. Biol. Interact., 2015, vol. 229, pp. 26–35. https://doi.org/10.1016/j.cbi.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  13. Elsaed, W.M., Alahmadi, A.M., Al-Ahmadi, B.T., et al., Gastroprotective and antioxidant effects of fluvoxamine on stress-induced peptic ulcer in rats, J. Taibah Univ. Med. Sci., 2018, vol. 13, pp. 422–431. https://doi.org/10.1016/j.jtumed.2018.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elshazly, S.M., Abd El Motteleb, D.M., et al., Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats, Chem. Biol. Interact., 2018, vol. 291, pp. 153–161. https://doi.org/10.1016/j.cbi.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  15. Erin, N., Türker, S., Elpek, Ö., et al., ADAM proteases involved in inflammation are differentially altered in patients with gastritis or ulcer, Exp. Ther. Med., 2018, vol. 15, pp. 1999–2005. https://doi.org/10.3892/etm.2017.5619

    Article  CAS  PubMed  Google Scholar 

  16. Estes, L.L., Fuhs, D.W., Heaton, A.H., et al., Gastric ulcer perforation associated with the use of injectable ketorolac, Ann. Pharmacother., 1993, vol. 27, pp. 42–43. https://doi.org/10.1177/106002809302700111

    Article  CAS  PubMed  Google Scholar 

  17. Eto, K., Puzon-McLaughlin, W., Sheppard, D., et al., RGD-independent binding of integrin α9β1 to the ADAM-12 and -15 disintegrin domains mediates cell–cell interaction, J. Biol. Chem., 2000, vol. 275, pp. 34922–34930. https://doi.org/10.1074/jbc.M001953200

    Article  CAS  PubMed  Google Scholar 

  18. Fisher, A.A. and Le Couteur, D.G., Nephrotoxicity and hepatotoxicity of histamine H2 receptor antagonists, Drug Saf., 2001, vol. 24, pp. 39–57. https://doi.org/10.2165/00002018-200124010-00004

    Article  CAS  PubMed  Google Scholar 

  19. Flower, R.J., The development of COX2 inhibitors, Nat. Rev. Drug Discov., 2003, vol. 2, pp. 179–191. https://doi.org/10.1038/nrd1034

    Article  CAS  PubMed  Google Scholar 

  20. Hsu, S.M., Raine, L., and Fanger, H.X., Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem., 1981, vol. 29, pp. 577–580. https://doi.org/10.1177/29.4.6166661

    Article  CAS  PubMed  Google Scholar 

  21. Karaboğa, İ., Ovalı, M.A., Yılmaz, A., et al., Gastroprotective effect of apricot kernel oil in ethanol-induced gastric mucosal injury in rats, Biotech. Histochem., 2018, vol. 93, pp. 601–607. https://doi.org/10.1080/10520295.2018.1511064

    Article  CAS  PubMed  Google Scholar 

  22. Kel’ginbaev, N.S., Sorokina, V.A., Stefanidu, A.G., et al., Treatment of long tubular bone fractures with Mumie Assil preparations in experiments and clinical conditions, Eksp. Khir. Anesteziol., 1973, vol. 18, pp. 31–35. PMID: 4271714.

    PubMed  Google Scholar 

  23. Kurz, T., Hoffjan, S., and Hayes, M.G., Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci, J. Allergy Clin. Immunol., 2006, vol. 118, pp. 396–402. https://doi.org/10.1016/j.jaci.2006.04.036

    Article  CAS  PubMed  Google Scholar 

  24. Laine, L. and Weinstein, W.M., Histology of alcoholic hemorrhagic “gastritis”: a prospective evaluation, Gastroenterology, 1988, vol. 94, pp. 1254–1262. https://doi.org/10.1016/0016-5085(88)90661-0

    Article  CAS  PubMed  Google Scholar 

  25. Lanas, A., Role of nitric oxide in the gastrointestinal tract, Arthritis Res. Ther., 2008, vol. 10, pp. 1–6. https://doi.org/10.1186/ar2465

    Article  CAS  Google Scholar 

  26. Laub, R.J., Process for preparing synthetic soil-extract materials and medicaments based thereon, US Patent no. CA2278759A1, 1999.

  27. Lee, J.H., Lee, D.U., and Jeong, C.S., Gardenia jasminoides ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats, Food Chem. Toxicol., 2009, vol. 47, pp. 1127–1131. https://doi.org/10.1016/j.fct.2009.01.037

    Article  CAS  PubMed  Google Scholar 

  28. Lemjabbar, H. and Basbaum, C., Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells, Nat. Med., 2002, vol. 8, pp. 41–46. https://doi.org/10.1038/nm0102-41

    Article  CAS  PubMed  Google Scholar 

  29. Li, W., Huang, H., Niu, X., et al., Protective effect of tetrahydrocoptisine against ethanol- induced gastric ulcer in mice, Toxicol. Appl. Pharmacol., 2013, vol. 272, pp. 21–29. https://doi.org/10.1016/j.taap.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Tian, X., Gou, L., et al., Protective effect of L-citrulline against ethanol-induced gastric ulcer in rats, Environ. Toxicol. Pharmacol., 2012, vol. 3, pp. 280–287. https://doi.org/10.1016/j.etap.2012.04.009

    Article  CAS  Google Scholar 

  31. Lu, S., Wu, D., Sun, G., et al., Gastroprotective effects of Kangfuxin against water-immersion and restraint stress-induced gastric ulcer in rats: roles of antioxidation, anti-inflammation, and pro-survival, Pharm. Biol., 2019, vol. 57, pp. 770–777. https://doi.org/10.1080/13880209.2019.1682620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv, H., Lin, Y., Liu, P., et al., Protective effects and potential underlying mechanisms of sodium copper chlorophyllin against ethanol-induced gastric ulcer in mice, Acta Biochim. Biophys. Sin., 2019, vol. 51, pp. 925–933. https://doi.org/10.1093/abbs/gmz083

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoud, Y.I. and El-Ghffar, E.A.A., Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress and inflammation, Biomed. Pharmacother., 2018, vol. 109, pp. 314–321. https://doi.org/10.1016/j.biopha.2018.10.118

    Article  CAS  PubMed  Google Scholar 

  34. Moncada-Pazos, A., Obaya, A.J., and Llamazares, M., ADAMTS-12 metalloprotease is necessary for normal inflammatory response, J. Biol. Chem., 2012, vol. 287, pp. 39554–39563. https://doi.org/10.1074/jbc.M112.408625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mousa, A.M., El-Sammad, N.M., Sherien, K., et al., Antiulcerogenic effect of Cuphea ignea extract against ethanol-induced gastric ulcer in rats, BMC Complement. Altern. Med., 2019, vol. 19, p. 345. https://doi.org/10.1186/s12906-019-2760-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muazam, S., Rana, R., Jawed, S., et al., Gastroprotective effect of sagu pearls on diclofenac sodium induced gastric ulcer, J. Islam Int. Med. Coll., 2015, vol. 10, pp. 204–209.

    Google Scholar 

  37. Oztas, E., Ozler, S., Ersoy, A.O., et al., Placental ADAMTS-12 levels in the pathogenesis of preeclampsia and intrahepatic cholestasis of pregnancy, Reprod. Sci., 2016, vol. 23, pp. 475–481. https://doi.org/10.1177/1933719115604730

    Article  CAS  PubMed  Google Scholar 

  38. Pan, J.S., He, S.Z., Xu, H.Z., et al., Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury, World J. Gastroenterol., 2008, vol. 14, pp. 5857–5867. https://doi.org/10.3748/wjg.14.5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, J.U., Kang, J.H., Rahman, M.A.A., et al., Gastroprotective effects of plants extracts on gastric mucosal injury in experimental Sprague–Dawley rats, BioMed. Res. Int., 2019, vol. 2019, art. 8759708. https://doi.org/10.1155/2019/8759708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peterson, W.L., Barnett, C., and Walsh, J.H., Effect of intragastric infusions of ethanol and wine on serum gastrin concentration and gastric acid secretion, Gastroenterology, 1986, vol. 191, pp. 1390–1395. https://doi.org/10.1016/0016-5085(86)90192-7

    Article  Google Scholar 

  41. Polo, C.M., Moraes, T.M., Pellizzon, C.H., et al., Gastric ulcers in middle-aged rats: the healing effect of essential oil from Citrus aurantium L.(Rutaceae), Evid. Based Complement. Alternat. Med., 2012, vol. 2012, art. 509451. https://doi.org/10.1155/2012/509451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Savić, J.S., Dilber, S.P., Marković, B.D., et al., Docking studies and α-substitution effects on the anti-inflammatory activity of β-hydroxy-β-arylpropanoic acids, Molecules, 2011, vol. 16, pp. 6645–6655. https://doi.org/10.3390/molecules16086645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seals, D.F. and Courtneidge, S.A., The ADAMs family of metalloproteases: multidomain proteins with multiple functions, Genes Dev., 2003, vol. 17, pp. 7–30. https://doi.org/10.1101/GAD.1039703

    Article  CAS  PubMed  Google Scholar 

  44. Sen, S., Chakraborty, R., De, B., et al., Plants and phytochemicals for peptic ulcer: an overview, Phcog. Rev., 2009, vol. 3, pp. 270–279.

    Google Scholar 

  45. Somerville, R.P., Longpre, J.M., Apel, E.D., et al., ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain, J. Biol. Chem., 2004, vol. 279, pp. 35159–35175. https://doi.org/10.1074/jbc.M402380200

    Article  CAS  PubMed  Google Scholar 

  46. Stewartand, D.J. and Ackroyd, R., Peptic ulcers and their complications, Surgery, 2011, vol. 29, pp. 568–574.

    Google Scholar 

  47. Takeuchi, K., Ueshima, K., Hironaka, Y., et al., Oxygen free radicals and lipid peroxidation in the pathogenesis of gastric mucosal lesions induced by indomethacin in rats. Relation to gastric hypermotility, Digestion, 1991, vol. 49, pp. 175–184. https://doi.org/10.1159/000200718

    Article  CAS  PubMed  Google Scholar 

  48. Tamaddonfard, E., Erfanparast, A., Farshid, A.A., et al., Safranal, a constituent of saffron, exerts gastro-protective effects against indomethacin-induced gastric ulcer, Life Sci., 2019, vol. 224, pp. 88–94. https://doi.org/10.1016/j.lfs.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  49. Vinagre, R.M.D.F., Vinagre, I.D.F., Vilar-e-Silva, A.,et al., Helicobacter pylori infection and immune profile of patients with different gastroduodenal diseases, Arq. Gastroenterol., 2018, vol. 55, pp. 122–127. https://doi.org/10.1590/S0004-2803.201800000-21

    Article  PubMed  Google Scholar 

  50. Wedemeyerand, R.S. and Blume, H., Pharmacokinetic drug interaction profiles of proton pump inhibitors: an update, Drug Saf., 2014, vol. 37, pp. 201–211. https://doi.org/10.1007/s40264-014-0144-0

    Article  CAS  Google Scholar 

  51. Wei, J., Richbourgh, B., Jia, T., et al., ADAMTS-12: a multifaced metalloproteinase in arthritis and inflammation, Mediators Inflamm., 2014, vol. 2014, art. 649718 https://doi.org/10.1155/2014/649718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan, Y., Shirakabe, K., and Werb, Z., The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors, J. Cell Biol., 2002, vol. 158, pp. 221–226. https://doi.org/10.1083/jcb.200112026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yildirim, F.I.A, Uyanik, Ö., Özyogurtcu, H., et al., Aggravating effect of atorvastatin on indomethacin-induced gastricinjury: focus on PGE2, TNF-a, neutrophils, and iNOS, Prostaglandins Other Lipid Mediators, 2015, vol. 121, pp. 53–62. https://doi.org/10.1016/j.prostaglandins.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  54. Yudina, N.V., Pisareva, S.I., and Saratikov, A.S., Antiulcerogenic activity of phenol. compounds of peat, Khim. Rastit. Syr’ya, 1998, vol. 4, pp. 29–32. NII Article ID (NAID) 10024717260.

  55. Zhao, X., Li, J., Meng, Y., et al., Treatment effects of jinlingzi powder and its extractive components on gastric ulcer induced by acetic acid in rats, Evid. Based Complement. Alternat. Med., 2019, vol. 2019, art. 7365841. https://doi.org/10.1155/2019/7365841

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Commission of Canakkale Onsekiz Mart University with the project named “Investigation of the Effects of Humic Acid in Different Acute Gastric Ulcer Models in Rats” coded TSA-2018-2592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müşerref Hilal Şehitoğlu.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. Our study was approved by Canakkale Onsekiz Mart University Animal Experiments Local Ethics Committee with decision 2018/05-02.

Highlights

Humic acid has a healing effect on stomach damage at the histopathological level, Humic acid suppresses iNOS and apoptosis and increases PCNA activity,

Humic acid reduces TNF-a and IL-6 levels that are proinflammatory cytokines in the gastric mucosa, while it increases IL-10 levels which is a member of anti-inflammatory cytokines, Humic acid increases ADAM10 and ADAMTS12 levels, these healing effects of humic acid are as strong as famotidine.

ADAMTS12 was also present in gastric mucosa for the first time, so ADAMTS12 levels were determined in healthy, gastric ulcer models and humic acid treated groups.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şehitoğlu, M.H., Öztopuz, Ö., Karaboğa, İ. et al. Humic Acid Has Protective Effect on Gastric Ulcer by Alleviating Inflammation in Rats. Cytol. Genet. 56, 84–97 (2022). https://doi.org/10.3103/S0095452722010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722010091

Navigation