Journal of Physical Studies 26(2), Article 2802 [7 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.2802

PHOTOCATALYTIC ACTIVITY OF NANOSIZED ZnO:HO FILMS DEPOSITED BY EXPLOSIVE EVAPORATION AT DEGRADATION OF TOLUENE IN AIR

A. M. Kasumov , A. I. Dmitriev , M. M. Zahornyi , V. M. Karavaeva , K. A. Korotkov , K. O. Vyshnevska , A. I. Ievtushenko 

Frantsevich Institute for Problems in Materials Science,
Krzhyzhanovsky St., Kyiv, UA–03860, Ukraine

Received 11 February 2022; in final form 24 March 2022; accepted 25 March 2022; published online 31 May 2022

One of the most promising methods of air purification today is photocatalytic oxidation of gas-phase and liquid-phase environmental pollutants of chemical and biological origin under the action of soft ultraviolet radiation to obtain non-harmous components of air: water and CO$_2$. The photocatalytic properties of thickness-nanosized ZnO:Ho films obtained by electron beam explosive evaporation have been studied during degradation of toluene in air under ultraviolet (365 nm) irradiation. Methods for holmium doping of ZnO and explosive evaporation were chosen with a view to using them for air purification from volatile toluene compounds. The photocatalytic activity was studied depending on the following parameters: exposure time, temperature, humidity, initial toluene concentration in the air, and Ho content in ZnO. It was stated that the kinetics of photocatalytic decomposition of air toluene over film ZnO:Ho is close to the first-order reaction. The temperature dependence of the photocatalytic process is described by the Arrhenius equation. The rate and energy of adsorption activation of thermo- and photocatalysis of toluene on the ZnO:Ho film surface are calculated. The highest photocatalytic activity is achieved at the air humidity above 50%, initial concentration of toluene in the air below $2.5 · 10^{-5} \frac{\rm mol}{\rm L}$, and the Ho content in ZnO of 3 at.%. As the Ho content in ZnO increases from 0 to 3 at.%, the rate of toluene degradation increases by 30%. The photocatalytic degradation of toluene over the ZnO:Ho film reaches the final stage with the formation of CO$_2$ gas.

Key words: photocatalytic activity, toluene, humidity, ZnO:Ho, concentration, CO2.

Full text


References
  1. M. Gopinath, R. Dhanasekar, Afr. J. Biotechnol. 96, 16210 (2012);
    Crossref
  2. M. Ghorbani, M. Omraei, M. Jafari, R. Katal, Asian J. Chem. 22, 8179 (2010).
  3. Y. J. Tham, P. A. Latif, A. M. Abdullah, A. Shamaladevi, Y. H. Taufiq-Yap, Bioresour. Technol. 102, 724 (2011);
    Crossref
  4. I. Ortiz, S. Revah, R. Auria, Environ. Technol. 24, 265 (2003);
    Crossref
  5. R. Muñoz, S. Villaverde, B. Guieysse, S. Revahm, Biotechnol. Adv. 25, 410 (2007);
    Crossref
  6. F. I. Khan, A. Kr. Ghoshal, J. Loss Prev. Process Ind. 13, 527 (2000);
    Crossref
  7. G. Gopinath, V. Archana, G. Saranya, V. Priscilla Pushparani, R. Dhanasekar, Int. J. Chem. Tech. Res. 5, 1401 (2013).
  8. F. G. Shahna et al., Chin. J. Chem. Eng. 18, 113 (2010);
    Crossref
  9. R. C. Harding, G. A. Hill, Y.-H. Lin, J. Chem. Technol. Biotechnol. 78, 406 (2003);
    Crossref
  10. A. B. Neal, R. C. Loehr, Waste Manage. 20, 59 (2000);
    Crossref
  11. J. H. Song, K. A. Kinney, Appl. Microbiol. Biotechnol. 68, 554 (2005);
    Crossref
  12. P. Jacobs, I. D. Bo, Kr. Demeestere, W. Verstraete, H. V. Langenhove, Biotechnol. Bioeng. 85, 68 (2004);
    Crossref
  13. M. M. Zahornyi et al., J. Nano- Electron. Phys. 13, 05034 (2021);
    Crossref
  14. O. E. Baibara, M. V. Radchenko, V. A. Karpyna, A. I. Ievtushenko, Phys. Chem. Solid State 22, 3 (2021);
    Crossref
  15. W.-R. Zhao, W.-Y. Zeng, H.-P. Xi, X.-X. Yu, Acta Phys.-Chim. Sin. 30, 761 (2014);
    Crossref
  16. L. Zhang, Y. Li, H. Xie, H. Wang, Q. Zhang, J. Nanosci. Nanotechnol. 15, 2944 (2015);
    Crossref
  17. J. Kong, Ch. Jiang, Z. Ruib, S. Liu, F. Xian, W. Ji, H. Ji, Chem. Engin. J 397, 125485 (2020) ;
    Crossref
  18. V. B. Koli, Sh.-Ch Ke, A. G. Dodamani, Sh. P. Deshmukh, J.-S. Kim, Catalysts 10, 632 (2020);
    Crossref
  19. Q. Zhang, F. Li, X. Chang, D. He, Mater. Manuf. Process. 29, 789 (2014);
    Crossref
  20. V. Binas, V. Stefanopoulos, G. Kiriakidis, P. Papagiannakopoulos, J. Materiomics 5, 56 (2019);
    Crossref
  21. V. Tomašić, F. Jović, Z. Gomzi, Catal. Today 137, 350 (2008);
    Crossref
  22. H. Irvani, M.N. Pour, A. Vahidi, S. Arezoomandan, H. S. F. Abady, Med. Gas Res. 8, 91 (2018);
    Crossref
  23. A. Rezaee, G. Pourtagi, H. Hossini, M. Loloi, J. Appl. Polymer Sci. 133, 43051 (2015);
    Crossref
  24. T. M. Fujimoto, M. Ponczek, U. L. Rochetto, R. Landers, E. Tomaz, Environ. Sci. Pollut. Res. 24, 6390 (2017);
    Crossref
  25. C. Belver, M. J. López-Muñoz, J. M. Coronado, J. Soria, Appl. Catal. B 46, 497 (2003);
    Crossref
  26. G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, A. Kuback, M. Fernández-García, J. Mol. Catal. A Chem. 320, 14 (2010);
    Crossref
  27. M. Tasbihi, M. Kete, A. M. Raichur, N. Novak Tušar, U. Lavrenčič Štangar, Environ. Sci. Pollut. Res. 19, 3735 (2012);
    Crossref
  28. K.-P. Yu, G.W.M. Lee, Appl. Catal. B 75, 29 (2007);
    Crossref
  29. Z. Wei, J. Sun, Zh. Xie, M. Liang, Sh. Chen, J. Hazard. Mater. 177, 814 (2010);
    Crossref
  30. J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, R. Zhao, Atmospheric Environ. 43, 2229 (2009);
    Crossref
  31. A. M. Kasumov et al., J. Water Chem. Technol. 43, 281, (2021);
    Crossref
  32. G. L. Kabongo et al., Nanoscale Res. Lett 11, 418 (2016);
    Crossref
  33. S. Goel, N. Sinha, B. Kumar, Physica E 105, 29 (2019);
    Crossref
  34. P. P. Pradyumnan, A. Paulson, M. Sabeer, N. Deepthy, AIP Conf. Proc. 1832, 110055 (2017);
    Crossref
  35. R. A. Mereu et al., Ceram. Int. 39, 5535 (2013);
    Crossref
  36. S. Golovynskyi et al., Vacuum 153, 204 (2018);
    Crossref
  37. A. M. Kasumov et al., Semicond. Phys. Quantum Electron. Optoelectron. 24, 139 (2021);
    Crossref
  38. M. I. Bulanov, I. P. Kalinkin, Prakticheskoe rukovodstvo po fotokolorimetricheskim i spektrofotometricheskim metodam analiza (Khimija, Leningrad, 1972).
  39. A. M. Kasumov, A. I. Dmitriev, K. A. Korotkov, V. M. Karavaeva, K. O. Vyshnevska, A. I. Ievtushenk, in Book of abstracts. Ukrainian Conference with International Participation "Chemistry, Physics and Technology of Surface", devoted to the 35th anniversary of the Chuiko Institute of Surface Chemistry of NAS of Ukraine 26–27 May 2021, Kyiv, p. 98.
  40. C. B. Ong, L. Y. Ng, A. W. Mohammad, Renew. Sust. Energ. Rev. 81, 536 (2018);
    Crossref
  41. A. J. Jafari, R. R. Kalantari, M. Kermani, M. H. Firooz, Chem. Zvesti. 73, 635 (2019);
    Crossref