Theoretical Calculation of The Fill Factor of N749/〖TiO〗_2 Solar Cells

Main Article Content

Naeam Nahi Abd Ali
Hadi J.M.Al-Agealy
Hossain Milani Moghaddam

Abstract

        In this paper, the fill factor of the N749/TiO2 solar cell is studied and calculated using the analysis method at standard conditions; i.e., T=300k  and  100 mW/cm2 irradiation.. The current density was derived and calculated using the donor-acceptor model according to the quantum transfer theory in DSSC solar cells. We estimate the influence parameters in DSSC that's an equivalent circuit to the I-V curves for three solvents. The fill factor parameters of the N749/TiO2 device are found to be 0.137,0.146 and 0.127 with Butanol, Ethanol           and Acetonitrile for carrier concentration .  1018 1/cm3 respectively. The photovoltaic characteristics ISc  , Vco  , and   Vm   are calculated depending on the current-voltage (J-V) characteristics of the device at room temperature. As a result of the fill factor analysis, N749/TiO2 cells showed different  fill factors dependent  on solvents type for the ISc  and Vco   .


 

Article Details

How to Cite
Theoretical Calculation of The Fill Factor of N749/〖TiO〗_2 Solar Cells. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 147-158. https://doi.org/10.30526/36.4.3236
Section
Physics

How to Cite

Theoretical Calculation of The Fill Factor of N749/〖TiO〗_2 Solar Cells. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 147-158. https://doi.org/10.30526/36.4.3236

Publication Dates

References

Tajamul, H. S.; Wei, W.; Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material, Inorganics magazine, 2022, 10, 191-201. https://doi.org/10.3390/ inorganics10110191.

Timothy, W.; Kenneth, P. G.; Gary, R.; A critical analysis of luminescent solar concentrator terminology and efficiency results, Solar Energy, 2022, 246, 119–140.

Razykov , T. M.; Ferekides, C. S.; Morel, D.; Stefanakos, E.; Ullal, H. S.; Upadhyaya, H. M.; Solar photovoltaic electricity: current status and future prospects, Solar Energy , 2011, 85, 8, 1580-1608 .

Umari, P.; Giacomazzi , L.; De Angelis, F.; Pastore, M.; Stefano, B.; Energy-level alignment in organic dye-sensitized TiO2 from GW calculations, The Journal of Chemical Physics, 2013, 139, 014709.

Walter, O.; D-π-A dye attached on TiO2(101) and TiO2(001) surfaces: Electron transfer properties from ab initio calculations, Solar Energy, 2021, 216 , 266–273.

He, L.; Guo, Y.; Kloo, L.; The dynamics of light-induced interfacial charge transfer of different dyes in dye-sensitized solar cells studied by ab initio molecular dynamics, Physical Chemistry Chemical Physics, 2021, 23, 48, 27171–27184.

Rawnaq, Q. G.; Hadi, J. M. A.; Mohsin, A. H.; Theoretical Analysis of the Electronic Current at Au/PTCDA Interface, NeuroQuantology , 2020,18, 9 , 81-86 ,.

Hadi, J. M. A.; Mohsin, A. H. H.; Mudhar, S. A.; Rafah, I. N.; Sarab, S. J.; A Theoretical Study of Charge Transport y at Au/ ZnSe and Au/ZnS Interfaces Devices. Ibn Al-Haitham Jour .for Pure & Appl. 2014. Sci., 27, 1

Hadi, J. M. A.; Mohammed, Z. F.; Estimation of the Electric Properties of Al/Cv System . Journal of University of Babylon for Pure and Applied Sciences, 2020, 28, 1.

Kwan, H. Min.; Taejun, K.; Min, G.K.; Hee, S.; Yoonmook, K.; Hae-Seok, L.; Donghwan, K.; Sungeun, P.; Sang, H. L.; An Analysis of Fill Factor Loss Depending on the Temperature for the Industrial Silicon Solar Cells, Energies. 2020, 13, 2931; doi:10.3390/en13112931.

David, G.; Zhifa, L.; Gunnar, S.; Uwe, R.; Thomas, K.; Fill Factor Losses and Deviations from the Superposition Principle in Lead Halide Perovskite Solar Cells, Sol. RRL, 2022,6, 220050-72200507

Moiz, S. A.; Alahmadi, A.N.M.; Aljohani, A. J.; Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell, Energies. 2020, 23, 13, 133797

Jayachithra, J. V.; Elampari, K.; Meena, M.; Fabrication of TiO2 based Dye-Sensitized Solar Cell using Nerium oleander as a sensitizer. IOP Conf. Series, Materials Science and Engineering. 2022, 12, 63. doi:10.1088/1757-899X/1263/1/012018.

Roghayeh, F.; Hossain, M. M.; Davood, F.; Tuning the spin transport properties of ferrocene-based single molecule junctions by different linkers , Chemical Physics Letters, 2018, 704 , 37–44.

Taif, S. A.; Mohammad, H. J.; Hadi, J. M. A.; Fatimah, B. A. R.; Chi, C. Y.; An Investigation of the Fill Factor and Efficiency of Molecular Semiconductor Solar Cells. Materials Science Forum , 2022, 12, 1039, 363,

Sarmad, S. A.; Hadi, J. M. A.; Saadi, R. A.; Theoretical Evaluation of Flow Electronic Rate at Au /TFB Interface. IOP Journal of Physics: Conference. 2021, 22, 1879 ,032096.

Hadi, J. M. A.; Hazim, H. D. A.; Investigation the Flow Charge Rate at InAs/D149 and ZnO/D149 System Using Theoretical Quantum Model, AIP Conference Proceedings. 2019, 2123, 020055, https://doi.org/10.1063/1.5116982 .

Hadi, J. M. A.; ,Sarmad, S. A.; Saadi, R. A.; Theoretical Study and Calculation of Electronic Current Flow at Platinum Metal Contact with TFP Molecule Systems, AIP Conference Proceedings, 2022, 2398, 020024. https://doi.org/10.1063/5.0094007

William, J. R.; Arnel, M. F.; Nathan, S. L.; Fermi Golden Rule Approach to Evaluating Outer-Sphere Electron-Transfer Rate Constants at Semiconductor/Liquid Interfaces, J. Phys. Chem. B, 1997, 101, 11152-11159.

Christophe, B.; Gerrit, B.; Emad, M.; Anders, H.; Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline, Solar Cells, J. Phys. Chem. B . 2002, 106, 49, 12693–12704;DOI:10.1021/jp0200268

Methaq, A. R.; Mohsin, E.; Hadi, J. M. A.; Theoretical calculation of the electronic current at N3 contact with TiO2 bsolar cell devices, AIP Conference Proceedings, 2022, 12. 2437,020060().

William, M. H.; CRC Handbook of Chemistry and Physics, Pub. Location Boca Raton Imprint CRC , 2014, 15 ,2, 23-33

Yow, J. L.; Shih, H. Y.; Carrier transport and photoresponse for heterojunction diodes based on the reduced graphene oxide-based TiO2 composite and p-type Si, Appl. Phys. A, 2014. 116,91–95 DOI 10.1007/s00339-013-8166-5

Zhe, X.; Jihuai , W.; Tongyue, W.; Quanlin , B.; Xin, H.; Zhang, L.; Jianming, L.; Miaoliang, H.; Yunfang, H.; Leqin, F.; Tuning the Fermi Level of TiO2 Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells, Energy Technol. 2017, 5, 1820–1826.

Mohsen, S.; Mohaddeseh, A.; Mohammad, R. M.; First principles study of hydrogen doping in anatase TiO2, Eur. Phys. J. Appl. Phys. 2014, 67, 30401 DOI: 10.1051/epjap/2014130582

Jiawei, Z.; Hangtian, Z.; Qichen, S.; Zhiwei, D.; Jun, M.; Zhifeng, R.; Gang, C.; Mobility enhancement in heavily doped semiconductors via electron cloaking, Nature Communications,2022,13,2482.https://doi.org/10.1038/s41467-022-29958-2. www.nature.com/naturecommunications

Hadi, J. M. A.; Nada, A. S.; Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO2 semiconductor interface. AIP Conference Proceedings, 2022. 2437(1):020062 ,

Michael, G.; Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003. 4 , 145–153.