Document Type : Review Article

Authors

Department of Mechanical Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Maan, Jordan.

Abstract

This research reviews various studies on the effect of using nanofluids in evacuated tube solar collectors (ETSC). The initial segment of this study elaborates on the importance of using the ETSCs and categorizes these collectors in terms of classification and application. The second segment evaluates the physical properties of nanofluids incorporated in the solar system collector and presents some applications of nanofluids. The last segment of the research reviews the works of a group of researchers who have already applied nanofluids to evacuated tube solar collectors for various purposes, including increasing the heat transfer coefficient and improving efficiency. Among the prevalent nanofluids employed in solar applications, Al2O3, CuO, and TiO2 feature prominently, whereas Ag, WO3, and CeO2 find limited application in the solar context. Furthermore, nanofluids within the size range of 1–25 nm, 25–50 nm, and 50–100 nm constitutes 54%, 25%, and 11% of the applications, respectively. Particularly noteworthy, the single-walled carbon nanotubes/water (SWCNT/water) heat pipe showcases the most remarkable efficiency enhancement, achieving an impressive 93.43% improvement.

Keywords

Main Subjects

  1. Al-Bawwat, A. K., Cano, A., Gomaa, M. R. & Jurado, F. (2023). Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. In Processes (Vol. 11, Issue 4, p. 992). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/pr11040992
  2. Al-Bawwat, A. K., Jurado, F., Gomaa, M. R. & Cano, A. (2023). Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan. In Sustainability (Switzerland) (Vol. 15, Issue 7, p. 5879). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su15075879
  3. Al-Rawashdeh, H., Hasan, A. O., Al-Shakhanbeh, H. A., Al-Dhaifallah, M., Gomaa, M. R. & Rezk, H. (2021). Investigation of the effect of solar ventilation on the cabin temperature of vehicles parked under the sun. Sustainability (Switzerland), 13(24), 13963. https://doi.org/10.3390/su132413963
  4. Alsboul, M., Ghazali, M. S. M., Gomaa, M. R. & Albani, A. (2022a). Experimental and Theoretical Investigation of the Thermophysical Properties of Cobalt Oxide (Co3O4) in Distilled Water (DW), Ethylene Glycol (EG), and DW–EG Mixture Nanofluids. Nanomaterials, 12(16), 2779. https://doi.org/10.3390/nano12162779
  5. Alsboul, M., Ghazali, M. S. M., Gomaa, M. R. & Albani, A. (2022b). Experimental and Theoretical Investigations of the Thermal Conductivity of Erbium Oxide/Ethylene Glycol Nanofluids for Thermal Energy Applications. Chemical Engineering and Technology, 45(12), 2139–2149. https://doi.org/10.1002/ceat.202200159
  6. Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Chew, B. T., Kazi, S. N. & Dahari, M. (2015). Performance dependence of thermosyphon on the functionalization approaches: An experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Conversion and Management, 92, 322–330. https://doi.org/10.1016/j.enconman.2014.12.051
  7. Arunkumar, T., Velraj, R., Denkenberger, D. C., Sathyamurthy, R., Kumar, K. V. & Ahsan, A. (2016). Productivity enhancements of compound parabolic concentrator tubular solar stills. Renewable Energy, 88, 391–400. https://doi.org/10.1016/j.renene.2015.11.051
  8. Asirvatham, L. G., Wongwises, S. & Babu, J. (2015). Heat transfer performance of a glass thermosyphon using graphene-acetone nanofluid. Journal of Heat Transfer, 137(11). https://doi.org/10.1115/1.4030479
  9. Ayompe, L. M. & Duffy, A. (2013). Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Solar Energy, 90, 17–28. https://doi.org/10.1016/j.solener.2013.01.001
  10. Budihardjo, I., Morrison, G. L. & Behnia, M. (2007). Natural circulation flow through water-in-glass evacuated tube solar collectors. Solar Energy, 81(12), 1460–1472. https://doi.org/10.1016/j.solener.2007.03.002
  11. Buschmann, M. H. & Franzke, U. (2014). Improvement of thermosyphon performance by employing nanofluid. International Journal of Refrigeration, 40, 416–428. https://doi.org/10.1016/j.ijrefrig.2013.11.022
  12. Chand, R. (2017). Nanofluid technologies and thermal convection techniques. In Nanofluid Technologies and Thermal Convection Techniques. IGI Global. https://doi.org/10.4018/978-1-68318-006-7
  13. Daghigh, R. & Shafieian, A. (2016). An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system. Renewable Energy, 96, 872–880. https://doi.org/10.1016/j.renene.2016.05.025
  14. Daghigh, R. & Zandi, P. (2019). Improving the performance of heat pipe embedded evacuated tube collector with nanofluids and auxiliary gas system. Renewable Energy, 134, 888–901. https://doi.org/10.1016/j.renene.2018.11.090
  15. Das, S. K. (2008). Nanofluids : science and technology. 397. https://www.wiley.com/en-sg/Nanofluids%3A+Science+and+Technology-p-9780470074732
  16. Dehaj, M. S. & Mohiabadi, M. Z. (2019). Experimental investigation of heat pipe solar collector using MgO nanofluids. Solar Energy Materials and Solar Cells, 191, 91–99. https://doi.org/10.1016/j.solmat.2018.10.025
  17. Eidan, A. A., AlSahlani, A., Ahmed, A. Q., Al-fahham, M. & Jalil, J. M. (2018). Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids. Solar Energy, 173, 780–788. https://doi.org/10.1016/j.solener.2018.08.013
  18. Elsheikh, A. H., Sharshir, S. W., Mostafa, M. E., Essa, F. A. & Ahmed Ali, M. K. (2018). Applications of nanofluids in solar energy: A review of recent advances. In Renewable and Sustainable Energy Reviews (Vol. 82, pp. 3483–3502). Pergamon. https://doi.org/10.1016/j.rser.2017.10.108
  19. Estellé, P., Mahian, O., Maré, T. & Öztop, H. F. (2017). Natural convection of CNT water-based nanofluids in a differentially heated square cavity. Journal of Thermal Analysis and Calorimetry, 128(3), 1765–1770. https://doi.org/10.1007/s10973-017-6102-1
  20. Gan, Y. Y., Ong, H. C., Ling, T. C., Zulkifli, N. W. M., Wang, C. T. & Yang, Y. C. (2018). Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector. Applied Thermal Engineering, 145, 155–164. https://doi.org/10.1016/j.applthermaleng.2018.09.012
  21. Ghaderian, J. & Sidik, N. A. C. (2017). An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector. International Journal of Heat and Mass Transfer, 108, 972–987. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.101
  22. Gomaa, Mohamed R., Al-Dhaifallah, M., Alahmer, A. & Rezk, H. (2020). Design, modeling, and experimental investigation of activewater cooling concentrating photovoltaic system. Sustainability (Switzerland), 12(13), 5392. https://doi.org/10.3390/su12135392
  23. Gomaa, Mohamed R., Al-Dmour, N., AL-Rawashdeh, H. A. & Shalby, M. (2020). Theoretical model of a fluidized bed solar reactor design with the aid of MCRT method and synthesis gas production. Renewable Energy, 148, 91–102. https://doi.org/10.1016/j.renene.2019.12.010
  24. Gomaa, Mohamed R., Murtadha, T. K., Abu-jrai, A., Rezk, H., Altarawneh, M. A. & Marashli, A. (2022). Experimental Investigation on Waste Heat Recovery from a Cement Factory to Enhance Thermoelectric Generation. Sustainability (Switzerland), 14(16), 10146. https://doi.org/10.3390/su141610146
  25. Gomaa, Mohamed R., Mustafa, R. J., Al-Dhaifallah, M. & Rezk, H. (2020). A low-grade heat Organic Rankine Cycle driven by hybrid solar collectors and a waste heat recovery system. Energy Reports, 6, 3425–3445. https://doi.org/10.1016/j.egyr.2020.12.011
  26. Gomaa, Mohamed Ramadan, Matarneh, G. A., Shalby, M. & AL-Rawashdeh, H. A. (2020). A State of the art Review on a Thermochemical Conversion of Carbonaceous Materials: Production of Synthesis Gas by Co-Gasification Process-Part I. Current Alternative Energy, 4(1), 26–46. https://doi.org/10.2174/2405463104999200904115100
  27. Gupta, M., Singh, V. & Said, Z. (2020). Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustainable Energy Technologies and Assessments, 39, 100720. https://doi.org/10.1016/j.seta.2020.100720
  28. Hayek, M., Assaf, J. & Lteif, W. (2011). Experimental investigation of the performance of evacuated-tube solar collectors under eastern mediterranean climatic conditions. Energy Procedia, 6, 618–626. https://doi.org/10.1016/j.egypro.2011.05.071
  29. Hong, T. K., Yang, H. S. & Choi, C. J. (2005). Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics, 97(6). https://doi.org/10.1063/1.1861145
  30. Hosseini, S. M. S. & Shafiey Dehaj, M. (2021). Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector. Applied Thermal Engineering, 182, 116086. https://doi.org/10.1016/j.applthermaleng.2020.116086
  31. Huminic, G. & Huminic, A. (2011). Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Experimental Thermal and Fluid Science, 35(3), 550–557. https://doi.org/10.1016/j.expthermflusci.2010.12.009
  32. Huminic, G. & Huminic, A. (2013). Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Conversion and Management, 76, 393–399. https://doi.org/10.1016/j.enconman.2013.07.026
  33. Hussain, A. H., Jawad, Q. & Sultan, K. F. (2015). Experimental analysis on thermal efficiency of evacuated tube solar collector by using nanofluids 2 . Preparation of Silver and Zirconium. Internatonal Journal of Sustainable and Green Energy, 4(3–1), 19–28. https://doi.org/10.11648/J.IJRSE.S.2015040301.14
  34. Hussein, A. K. (2016). Applications of nanotechnology to improve the performance of solar collectors - Recent advances and overview. In Renewable and Sustainable Energy Reviews (Vol. 62, pp. 767–792). Pergamon. https://doi.org/10.1016/j.rser.2016.04.050
  35. Kang, W., Shin, Y. & Cho, H. (2019). Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water. Journal of Mechanical Science and Technology, 33(3), 1477–1485. https://doi.org/10.1007/s12206-019-0249-6
  36. Kaya, H. & Arslan, K. (2019). Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(3), 581–593. https://doi.org/10.1007/s00231-018-2442-z
  37. Kim, H., Ham, J., Park, C. & Cho, H. (2016). Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy, 94, 497–507. https://doi.org/10.1016/j.energy.2015.11.021
  38. Kim, H., Kim, J. & Cho, H. (2017). Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid. Energy, 118, 1304–1312. https://doi.org/10.1016/j.energy.2016.11.009
  39. Kolsi, L., Alrashed, A. A. A. A., Al-Salem, K., Oztop, H. F. & Borjini, M. N. (2017). Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. International Journal of Heat and Mass Transfer, 111, 1007–1018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.069
  40. Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S. & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  41. Li, H. jie, Jiang, F., Qi, G. peng, Zhao, P. li, Jiang, T., Li, N., Chen, X. ling & Li, X. lun. (2018). Effect of particle size and solid holdup on heat transfer performance of a SiC/water three-phase closed thermosyphon. Applied Thermal Engineering, 132, 808–816. https://doi.org/10.1016/j.applthermaleng.2017.12.114
  42. Li, L. & Dubowsky, S. (2011). A new design approach for solar concentrating parabolic dish based on optimized flexible petals. Mechanism and Machine Theory, 46(10), 1536–1548. https://doi.org/10.1016/j.mechmachtheory.2011.04.012
  43. Li, X., Xu, E., Ma, L., Song, S. & Xu, L. (2019). Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant. Renewable Energy, 132, 998–1017. https://doi.org/10.1016/j.renene.2018.06.094
  44. Liu, M. S., Lin, M. C. C., Tsai, C. Y. & Wang, C. C. (2006). Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer, 49(17–18), 3028–3033. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
  45. Liu, Z. H., Hu, R. L., Lu, L., Zhao, F. & Xiao, H. S. (2013). Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Conversion and Management, 73, 135–143. https://doi.org/10.1016/j.enconman.2013.04.010
  46. Liu, Z. H., Yang, X. F. & Guo, G. L. (2007). Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. Journal of Applied Physics, 102(1). https://doi.org/10.1063/1.2748348
  47. Mahendran, M., Lee, G. C., Sharma, K. V. & Shahrani, A. (2012). Performance of Evacuated Tube Solar Collector using Water-Based Titanium Oxide Nanofluid. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 3, 301–310. https://doi.org/10.15282/jmes.3.2012.6.0028
  48. Marashli, A., Alfanatseh, E., Shalby, M. & Gomaa, M. R. (2022). Modelling single-effect of Lithium Bromide-Water (LiBr-H2O) driven by an evacuated solar tube collector in Ma’an city (Jordan) case study. Case Studies in Thermal Engineering, 37, 102239. https://doi.org/10.1016/j.csite.2022.102239
  49. Marmoush, M. M., Rezk, H., Shehata, N., Henry, J. & Gomaa, M. R. (2018). A novel merging Tubular Daylight Device with Solar Water Heater – Experimental study. Renewable Energy, 125, 947–961. https://doi.org/10.1016/j.renene.2018.03.031
  50. Mercan, M. & Yurddaş, A. (2019). Numerical analysis of evacuated tube solar collectors using nanofluids. Solar Energy, 191, 167–179. https://doi.org/10.1016/j.solener.2019.08.074
  51. Morrison, G. L., Tran, N. H., McKenzie, D. R., Onley, I. C., Harding, G. L. & Collins, R. E. (1984). Long term performance of evacuated tubular solar water heaters in Sydney, Australia. Solar Energy, 32(6), 785–791. https://doi.org/10.1016/0038-092X(84)90253-6
  52. Muhammad, M. J. (2016). Thermal Performance of Thermosyphon Evacuated Tube Solar Collector using TiO2/Water Nanofluid Thermal Rating of underground Power Cables View project CFD simulation of SARS-CoV-2 airborne transmission View project. In Journal of Advanced Research in Fluid Mechanics and Thermal Sciences (Vol. 20, Issue 1). https://www.akademiabaru.com/submit/index.php/arfmts/article/view/2067
  53. Muhammad, M. J., Muhammad, I. A., Sidik, N. A. C., Yazid, M. N. A. W. M., Mamat, R. & Najafi, G. (2016). The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review. In Renewable and Sustainable Energy Reviews (Vol. 63, pp. 226–236). Pergamon. https://doi.org/10.1016/j.rser.2016.05.063
  54. Nie, X., Zhao, L., Deng, S. & Lin, X. (2017). Experimental study on thermal performance of U-type evacuated glass tubular solar collector with low inlet temperature. Solar Energy, 150, 192–201. https://doi.org/10.1016/j.solener.2017.04.030
  55. Ozsoy, A. & Corumlu, V. (2018). Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renewable Energy, 122, 26–34. https://doi.org/10.1016/j.renene.2018.01.031
  56. Papadimitratos, A., Sobhansarbandi, S., Pozdin, V., Zakhidov, A. & Hassanipour, F. (2016). Evacuated tube solar collectors integrated with phase change materials. Solar Energy, 129, 10–19. https://doi.org/10.1016/j.solener.2015.12.040
  57. Rezk, H., Gomaa, M. R., Marmoush, M. M., Shehata, N. & Henry, J. (2019). Theoretical and experimental performance investigation of a newly combined TDD and SWH system. Applied Thermal Engineering, 161, 114156. https://doi.org/10.1016/j.applthermaleng.2019.114156
  58. Sabiha, M. A., Saidur, R., Hassani, S., Said, Z. & Mekhilef, S. (2015). Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Conversion and Management, 105, 1377–1388. https://doi.org/10.1016/j.enconman.2015.09.009
  59. Sajadi, A. R. & Kazemi, M. H. (2011). Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. International Communications in Heat and Mass Transfer, 38(10), 1474–1478. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.007
  60. Sayed, E. T., Rezk, H., Olabi, A. G., Gomaa, M. R., Hassan, Y. B., Rahman, S. M. A., Shah, S. K. & Abdelkareem, M. A. (2022). Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material. Energies, 15(22), 8494. https://doi.org/10.3390/en15228494
  61. Selimefendigil, F. & Öztop, H. F. (2019). Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. International Journal of Heat and Mass Transfer, 129, 265–277. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.101
  62. Selvakumar, P., Somasundaram, P. & Thangavel, P. (2014). Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Conversion and Management, 85, 505–510. https://doi.org/10.1016/j.enconman.2014.05.069
  63. Shanbedi, M., Heris, S. Z., Amiri, A. & Baniadam, M. (2014). Improvement in Heat Transfer of a Two-Phased Closed Thermosyphon Using Silver-Decorated MWCNT/Water. Journal of Dispersion Science and Technology, 35(8), 1086–1096. https://doi.org/10.1080/01932691.2013.833101
  64. Sharafeldin, M. A. & Gróf, G. (2018). Evacuated tube solar collector performance using CeO2/water nanofluid. Journal of Cleaner Production, 185, 347–356. https://doi.org/10.1016/j.jclepro.2018.03.054
  65. Sharafeldin, M. A. & Gróf, G. (2019). Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renewable Energy, 134, 453–460. https://doi.org/10.1016/j.renene.2018.11.010
  66. Tang, R., Cheng, Y., Wu, M., Li, Z. & Yu, Y. (2010). Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights. Energy Conversion and Management, 51(12), 2548–2556. https://doi.org/10.1016/j.enconman.2010.04.015
  67. Tang, R. & Yang, Y. (2014). Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters. Energy Conversion and Management, 80, 173–177. https://doi.org/10.1016/j.enconman.2014.01.025
  68. Tong, Y. & Cho, H. (2015). Comparative study on the thermal performance of evacuated solar collectors with U-Tubes and heat pipes. International Journal of Air-Conditioning and Refrigeration, 23(3). https://doi.org/10.1142/S2010132515500194
  69. Tong, Y., Kim, J. & Cho, H. (2015). Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renewable Energy, 83, 463–473. https://doi.org/10.1016/j.renene.2015.04.042
  70. Wang, X., Huang, K., Yuying, Y. & Cen, H. (2022). Heat transfer enhancement with nanofluids in automotive. In Advances in Nanofluid Heat Transfer (pp. 229–263). https://doi.org/10.1016/B978-0-323-88656-7.00016-7
  71. Wen, D. & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
  72. Yan, S., Wang, F., Shi, Z. G. & Tian, R. (2017). Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Applied Thermal Engineering, 118, 385–391. https://doi.org/10.1016/j.applthermaleng.2017.02.108
  73. Yang, X. F. & Liu, Z. H. (2012). Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. International Journal of Heat and Mass Transfer, 55(25–26), 7375–7384. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.026
  74. Zambolin, E. & Del Col, D. (2010). Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Solar Energy, 84(8), 1382–1396. https://doi.org/10.1016/j.solener.2010.04.020
  75. Zhou, S. Q. & Ni, R. (2008). Measurement of the specific heat capacity of water-based Al2 O3 nanofluid. Applied Physics Letters, 92(9). https://doi.org/10.1063/1.2890431