اثرات تغییر شرایط آب و هوایی بر بخش کشاورزی حوضه آبریز رودخانه خیرآباد: کاربرد مدل WEAP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه توسعه روستایی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

2 استاد، گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران.

چکیده

مقدمه و هدف: با توجه به تأثیرات گسترده و متقابل اقلیم با بخش­های مختلف تولیدی، امروزه از تغییر اقلیم به عنوان یکی از مهم­ترین چالش­های زیست‌محیطی قرن بیست و یکم یاد می­شود که پیامدهای جدی اقتصادی به دنبال دارد. در این میان اثرپذیری بخش کشاورزی از تغییرات آب و هوایی نسبت به سایر بخش‌های دیگر بیشتر بوده و تولید محصولات کشاورزی به‌طور مستقیم به این تغییرات وابسته اند. در این مطالعه تلاش شد تا اثر تغییر شرایط آب و هوایی بر بخش کشاورزی حوضه آبریز رودخانه خیرآباد مورد ارزیابی قرار گیرد.
مواد و روش­ها: در این مطالعه به منظور ارزیابی اثرات تغییرات شرایط آب و هوایی از مدل شبیه‌سازی  WEAP استفاده شده  است. مدل WEAP یک ابزار برنامه­ریزی منابع آب است که بر اصل بیلان آب استوار می­باشد و زیرحوضه­های مختلف، گره­های تقاضای آب، زیرساخت­ها، جریان­های آب و کانال­های انتقال آب که همگی با یکدیگر مرتبط هستند را نشان می­دهد. روش MABIA موجود در نرم افزار WEAP ابزاری مناسب جهت شبیه­سازی اثرات تغییرات اقلیم است می­باشد. این روش نیازهای آبی و عملکرد محصولات را شبیه­سازی و به کاربران اجازه می­دهد که اثرات تغییرات آب و هوایی و آب در دسترس بر رشد محصول را در نظر بگیرند.
یافته­ها: نتایج نشان داد که تحت سناریو اقلیمی میانه میزان عملکرد محصولات افزایش و نیاز خالص آبی آن­ها کاهش می­یابد. در این بین بیشترین افزایش عملکرد مربوط به محصول جو و کمترین آن مربوط به محصول هندوانه است. این در حالی است که با تغییر شرایط دما و بارش بر اساس سناریو اقلیمی بدبینانه، عملکرد محصولات مورد مطالعه در سطح پایین­تری نسبت به شرایط پایه قرار می­گیرد. همچنین تحت این شرایط نیاز خالص آبی محصولات نیز افزایش یافته و برای دو محصول جو و گندم بیش از سایر محصولات دستخوش تغییر شده است و با تنش افزایش نیاز آبی مواجه می­باشند. در نهایت نتایج نشان داد که شاخص بهره­وری اقتصادی و فیزیکی آب محاسبه شده در شرایط اقلیمی میانه برای محصولات جو، گوجه و خیار بیشترین اثرپذیری را از تغییر شرایط آب و هوایی داشته است.
بحث و نتیجه­گیری: نتایج این تحقیق نشان داد که با اعمال سناریوی اقلیمی بدبینانه بهره‌وری اقتصادی و فیزیکی نهاده آب نسبت به سناریو پایه برای تمامی محصولات کاهش می‌یابد که این امر پیامدهای منفی رخداد پدیده تغییر اقلیم را در محدوده مطالعاتی حوضه آبریز رودخانه خیرآباد و برای کشاورزان این منطقه بازگو می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of climate change on the agricultural sector in the Kheirabad River Basin: Application of WEAP Software

نویسندگان [English]

  • Gh. layani 1
  • mohammad bakhshoodeh 2
1 Professor Assistance of Rural Development, School of Agriculture, Shahrekord University, Iran
2 Professor of Agricultural Economics, School of Agriculture, Shiraz University, Iran
چکیده [English]

Introduction: Due to the wide and interaction effects of climate with different production sectors, today climate change is mentioned as one of the most important environmental challenges of the 21st century, which has serious economic consequences. Meanwhile, the agricultural sector is more affected by climate change than other sectors and agricultural production is directly related to these changes. In this study, an attempt was made to evaluate the effect of climate change on the agricultural sector of the Khairabad River Basin.
Materials and Methods:  In this study, the WEAP simulation model was used to evaluate the effects of climate change. The WEAP model is a water resources planning tool based on the principle of water balance and shows the various sub-basins, water demand nodes, infrastructure, water flows and water transmission channels that are all interconnected. The MABIA method in WEAP software is a suitable tool to simulate the effects of climate change. This method simulates water requirements and crop performance and allows users to consider the effects of climate change and available water on crop growth.
Findings: The results noted that under the average climate scenario, the crop yields increased and their water requirement decreased. Meanwhile, the highest increase in yield is related to the barley and the shortest is the watermelon. However, with the changing temperature and precipitation conditions based on the pessimistic climate scenario, the crop yield of most products is lower than the base conditions. Also, under these circumstances, the water requirements of crops have also increased, and the change in wheat and barley water requirements are more than other products and are facing increasing water stress. The results revealed that, under the average scenario, the climatic conditions have more effect on the economic productivity index for barley, tomato, and cucumber. The change of the water productivity index for these crops was 25.19%, 24.98%, and 23.80%, respectively. In addition, the results confirmed that by applying the pessimistic climate scenario the water productivity index decrease in comparison with baseline.
Conclusion: The results of this study showed that by applying a pessimistic climate scenario, the economic and physical productivity of water input will decrease compared to the baseline scenario for all products.

کلیدواژه‌ها [English]

  • Keywords: Climate Change
  • WEAP
  • Water requirement
  • Yield
  • Economic Productivity
  1. Adams RM, Fleming RA, Chang CC, McCarl BA, Rosenzweig C. A reassessment of the economic effects of global climate change on US agriculture. Climatic change. 1995 Jun;30(2):147-67.

https://link.springer.com/article/10.1007/BF01091839

  1. Alcamo J, Dronin N, Endejan M, Golubev G, Kirilenko A. A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Change. 2007 Aug 1;17(3-4):429-44.

https://www.sciencedirect.com/science/article/abs/pii/S0959378007000064

  1. Arshad M, Amjath-Babu TS, Krupnik TJ, Aravindakshan S, Abbas A, Kächele H, Müller K. Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. Paddy and Water Environment. 2017 Apr 1;15(2):249-61.

https://link.springer.com/article/10.1007%2Fs10333-016-0544-0

  1. Bates B, Kundzewicz Z, Wu S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008.

https://www.mdpi.com/2077-1312/9/2/205

  1. Berry PM, Rounsevell MD, Harrison PA, Audsley E. Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environmental science & policy. 2006 Apr 1;9(2):189-204.

https://www.sciencedirect.com/science/article/abs/pii/S146290110500153X

  1. Chang CC. The potential impact of climate change on Taiwan's agriculture. Agricultural Economics. 2002 May;27(1):51-64.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1574-0862.2002.tb00104.x

  1. Deressa T, Hassan R, Poonyth D. Measuring the impact of climate change on South African agriculture: The case of sugarcane growing regions. Agrekon. 2005 Dec 1;44(4):524-42.

https://www.tandfonline.com/doi/abs/10.1080/03031853.2005.9523726

  1. Gbetibouo GA, Hassan RM. Measuring the
  2. economic impact of climate change on major South African field crops: a Ricardian approach. Global and Planetary change. 2005 Jul 1;47(2-4):143-52.

https://www.sciencedirect.com/science/article/abs/pii/S0921818104001948

  1. Henseler M, Wirsig A, Herrmann S, Krimly T, Dabbert S. Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agricultural Systems. 2009 Apr 1;100(1-3):31-42.

https://www.sciencedirect.com/science/article/abs/pii/S0308521X08001339

  1. Hosseini S.S, And Nazari M. Assessing the economic vulnerability of the country's agricultural sector to climate change. Third National Climate Change Report to be submitted to the Secretariat of the UNFCCC Convention. 2015; 144-1.

www.climate-change.ir

  1. Khaleghi SA. The effects of climate change on agricultural production and Iranian economy. Journal of Agricultural Economics Researches. 2015;7(1).

https://www.cabdirect.org/cabdirect/abstract/20153123638

  1. Liu C, Lu M, Cui J, Li B, Fang C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Global change biology. 2014 May;20(5):1366-81.

https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12517

  1. Mahmoodi A, Parhizkari A. Economic analysis of the climate change impacts on products yield, cropping pattern and farmer's gross margin (case study: Qazvin plain). Quarterly Journal of Economic Growth and Development Research. 2016 Feb 20;5(17 (3)):40-25.

http://egdr.journals.pnu.ac.ir/article_4673.html?lang=en

  1. Mendelsohn R, Nordhaus WD, Shaw D. The impact of global warming on agriculture: a Ricardian analysis. The American economic review. 1994 Sep 1:753-71.

https://www.jstor.org/stable/2118029

  1. Momeni S, Zibaei M. The potential impacts of climate change on the agricultural sector of Fars province. Agricultural Economics and Development. 2013 Nov 22;27(3):169-79.

https://iranjournals.nlai.ir/bitstream/handle/123456789/827255

  1. Najafpure B. The Role of Climate in Environmental Planning and Management (With The Emphasis On Iran). 2007; 116-126.

https://www.sid.ir/en/journal/ViewPaper.aspx?id=197724

  1. Parhikari A. Determining the economic value of irrigation water and farmers' response to precious and non-price policies in Qazvin province. University of Zabol. 2012.

https://iranjournals.nlai.ir/handle/123456789/5438

  1. Parhizkari A, Mozafari M.M, Parhizkari R, Parhizkari M. Management of exploitation and optimal allocation of water resources to determine the agro-economic plan of the optimal cultivation pattern in Rudbar Alamut region. Journal of Agriculture and Natural Resources. 2015; (1): 1-19.

https://iranjournals.nlai.ir/handle/123456789/5438

  1. Pishbahar E, Darparnian S. Factors Creating Systematic Risk for Rainfed Wheat Production in Iran, Using Spatial Econometric Appro ach. 2018 1-20.

http://hdl.handle.net/123456789/3846

  1. Rahmani M, Jami AA, Shahidi A, Hadizadeh AM. Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L Case study: Birjand plain). 2015 7(4): 443-460.

https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=547055

  1. Reidsma P, Lansink AO, Ewert F. Economic impacts of climatic variability and subsidies on European agriculture and observed adaptation strategies. Mitigation and Adaptation Strategies for Global Change. 2009 Jan;14(1):35-59.

https://link.springer.com/article/10.1007/s11027-008-9149-2

  1. Rezaee Zaman M, Morid S, Delavar M. Evaluation of the effects of climate change on hydro climatology variables of Siminehroud basin. Journal of Water and Soil, 2014 27 (6): 1247-1259.

https://www.sid.ir/en/journal/ViewPaper.aspx?ID=439848

  1. Sieber J. WEAP water evaluation and planning system. 2006.

https://scholarsarchive.byu.edu/iemssconference/2006/all/397/

  1. Tao F, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agricultural and forest meteorology. 2008 Jan 7;148(1):94-110.

https://www.sciencedirect.com/science/article/abs/pii/S0168192307002535

  1. Travis J, Ybbert L, and Daniel A. Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food policy. 2012 Feb 1;37(1):114-23.

https://www.sciencedirect.com/science/article/abs/pii/S0306919211001345

  1. Xiong W, Conway D, Xu YL, Jiang J, Li Y, Calsamiglia-Mendlewicz S, Lin ED, Hui J. Future cereal production in China: Modelling the interaction of climate change, water availability and socio-economic scenarios. The Impacts of Climate Change on Chinese Agriculture–Phase II Final Report.

https://ueaeprints.uea.ac.uk/id/eprint/33659/1/Future-cereal-production-Interaction.pdf

  1. Yan M, Cheng K, Luo T, Yan Y, Pan G, Rees RM. Carbon footprint of grain crop production in China–based on farm survey data. Journal of Cleaner Production. 2015 Oct 1; 104:130-8.

https://www.sciencedirect.com/science/article/abs/pii/S095965261500606X

  1. Yates D, Sieber J, Purkey D, Huber-Lee A. WEAP21—A demand-, priority-, and preference-driven water planning model: part 1: model characteristics. Water International. 2005 Dec 1;30(4):487-500.

https://www.tandfonline.com/doi/abs/10.1080/02508060508691893