1. Debeljak, M. Decision trees in ecological modelling / M. Debeljak, S. Džeroski // Modelling complex ecological dynamics: An introduction into ecological modelling for students, teachers & scientists / ed.: F. Jopp [et al.]. - Heidelberg, 2011. - P. 197-209.
2. Zhang, B. Modelling the productivity of naturalised pasture in the North Island, New Zealand: a decision tree approach / B. Zhang, I. Valentine, P. Kemp // Ecol. Modelling. - 2005. - Vol. 186, N 3. - P. 299-311. https://doi.org/10.1016/j.ecolmodel.2004.12.016
3. Prediction of phytoplankton biomass and identification of key influencing factors using interpretable machine learning models / Y. Xu [et al.] // Ecolog. Indicators. - 2024. - Vol. 158. - Art. 111320. https://doi.org/10.1016/j.ecolind.2023.111320
4. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest / J. Cai [et al.] // Appl. Energy. - 2020. - Vol. 262. - Art. 114566. https://doi.org/10.1016/j.apenergy.2020.114566
5. Predictive models for the effect of environmental factors on the abundance of vibrio parahaemolyticus in oyster farms in taiwan using extreme gradient boosting / N. Ndraha [et al.] // Food Control. - 2021. - Vol. 130. - Art. 108353. https://doi.org/10.1016/j.foodcont.2021.108353
6. Golden, C. E. Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms / C. E. Golden, M. J. Rothrock, A. Mishra // Food Res. Int. - 2019. - Vol. 122. - P. 47-55. https://doi.org/10.1016/j.foodres.2019.03.062
7. Techniques to improve ecological interpretability of black-box machine learning models / T. Welchowski [et al.] // J. Ag., Biol. Envir. St. - 2021. - Vol. 27, N 1. - P. 175-197. https://doi.org/10.1007/s13253-021-00479-7
8. Konoplev, A. Mobility and bioavailability of the Chernobyl-derived radionuclides in soil-water environment: Review / A. Konoplev // Behavior of radionuclides in the environment II: Chernobyl / ed. by A. Konoplev, K. Kato, S. N. Kalmykov. - Singapore, 2020. - P. 157-193. https://doi.org/10.1007/978-981-15-3568-0_3
9. Мирошников, В. Справочник таксатора / В. Мирошников, О. Труль, В. Ермаков. ‒ Минск: Ураджай, 1980. - 359 с.
10. Радиационный контроль. Обследование лесосек. Порядок проведения: ТКП 239.2010 (02080). Введ. 01.06.2010 / М-во лесн. хоз-ва Респ. Беларусь. - Минск: М-во лесн. хоз-ва Респ. Беларусь, 2010. - 22 с.
11. Практикум по агрохимии: учеб. пособие / О. А. Амельянчик [и др.]; под ред. В. Минеева. ‒ 2-е изд., перераб. и доп. - М.: Изд-во МГУ, 2001. - 689 с.
12. Gilmore, G. R. Practical gamma-ray spectrometry / G. R. Gilmore. ‒ 2nd ed. - John Wiley & Sons, 2008. - 387 p.
13. Tarsitano, D. Evaluating and reducing a model of radiocaesium soil-plant uptake / D. Tarsitano, S. Young, N. Crout // J. Environ. Radioactiv. - 2011. - Vol. 102, N 3. - P. 262-269. https://doi.org/10.1016/j.jenvrad.2010.11.017
14. Deriving probabilistic soil distribution coefficients (Kd). Part 2: Reducing caesium Kd uncertainty by accounting for experimental approach and soil properties / Ramírez-Guinart O. [et al.] // J. Environ. Radioactiv. - 2020. - Vol. 223-224. - Art. 106407. https://doi.org/10.1016/j.jenvrad.2020.106407
15. Sheppard, S. C. Robust prediction of Kd from soil properties for environmental assessment / S. C. Sheppard // Hum. Ecol. Risk Assess. - 2011. - Vol. 17, N 1. - P. 263-279. https://doi.org/10.1016/j.jenvrad.2020.106407
16. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services / M. Drusch [et al.] // Remote Sensing Environ. - 2012. - Vol. 120. - P. 25-36. https://doi.org/10.1016/j.rse.2011.11.026
17. ALOS World 3D 30-meter DEM. V3.2 [Electronic resource] / JAEA 2021. - Mode of access: https://doi.org/10.5069/G94M92HB. - Date of access: 17.11.2021.
18. Version 4 of the SMAP level‐4 soil moisture algorithm and data product / R. H. Reichle [et al.] // J. Adv. Model. Earth Syst. - 2019. - Vol. 11, N 10. - P. 3106-3130. https://doi.org/10.1029/2019MS001729
19. Lightgbm: A highly efficient gradient boosting decision tree [Electronic resource] / G. Ke [et al.] // Advances in Neural Information Processing Systems 30 (NIPS 2017) / ed. by I. Guyon [et al.]. - Mode of access: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf. - Date of access: 31.05.2024.
20. Snoek, J. Practical bayesian optimization of machine learning algorithms [Electronic resource] / J. Snoek, H. Larochelle, R. P. Adams // Proceedings of the 25th International conference on neural information processing systems: in 2 vol. - Lake Tahoe, Nevada: Curran Associates Inc., 2012. - Vol. 2. - P. 2951-2959. Mode of access: https://dl.acm.org/doi/10.5555/2999325.2999464. - Date of access: 31.05.2024.
21. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery / S. M. Lundberg [et al.] // Nat. Biomed. Engin. - 2018. - Vol. 2, N 10. - P. 749-760. https://doi.org/10.1038/s41551-018-0304-0
22. From local explanations to global understanding with explainable AI for trees / S. M. Lundberg [et al.] // Nat. Machine Intel. - 2020. - Vol. 2, N 1. - P. 56-67. https://doi.org/10.1038/s42256-019-0138-9
23. Анализ возможности использования спутниковых данных для прогноза параметров перехода радиоактивных изотопов цезия из почвы в древесные растения / А. Н. Никитин А. [и др.] // Восьмой белорусский космический конгресс: материалы, 25‒27 окт. 2022 г., г. Минск: в 2 т. / науч. ред.: С. В. Кругликов, И. В. Филипченко. - Минск, 2022. - Т. 1. - С. 245-249.
24. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in arabidopsis / Z. Qi [et al.] // J. Exp. Bot. - 2008. - Vol. 59, N 3. - P. 595-607. https://doi.org/10.1093/jxb/erm330
25. Экспериментальная оценка влияния режима увлажнения почвы на накопление 137Cs побегами яровой пшеницы / А. Н. Никитин [и др.] // Вес. Нац. акад. навук Беларусі. Сер. біял. навук. - 2020. - Т. 65, № 2. - P. 229-238.
26. Nikitin, A. N. Impact of soil moisture on cesium uptake by plants: Model assessment / A. N. Nikitin // J. Environ. Radioactiv. - 2021. - Vol. 240. - Art. 106754. https://doi.org/10.1016/j.jenvrad.2021.106754
27. Smolders, E. Concentrations of 137Cs and K in soil solution predict the plant availability of 137Cs in soils / E. Smolders, K. Van den Brande, R. Merckx // Environ. Sci. Technol. - 1997. - Vol. 31, N 12. - P. 3432-3438. https://doi.org/10.1021/es970113r