El Uso de la Nanotecnología para el desarrollo de empaques alimenticios del sector pesquero

Autores/as

  • Dennys Almachi Universidad Central del Ecuador
  • Pablo Bonilla Universidad Central del Ecuador

DOI:

https://doi.org/10.29166/quimica.v7i2.3270

Palabras clave:

Puntos cuánticos de carbono, histaminas, actividad antibacterial

Resumen

En el presente artículo de revisión; se analizó la propuesta para desarrollar un empaque alimenticio para el sector pesquero, funcionalizado con puntos cuántos de carbono (CQD), que permita la cuantificación directa de histaminas (HIS). Se consideraron los buscadores Science Direct, Wiley, ACS Publication, Pubmed, Royal Society of Chemistry, SpringerLink, Igenta Connect, Plos One, Dovepress, Taylor y Francis y se encontraron solamente cuatro investigaciones que cuantificaron HIS a través de los CQD. Por lo tanto, se consideró esta metodología analítica para la elaboración del empaque inteligente; sin embargo, se determinó que la propuesta, posiblemente no se podría realizar debido a que las HIS se concentran en el músculo del marisco. De igual manera, se consideró la actividad antibacterial de los CQD y se encontraron varias investigaciones que demuestran la eliminación de tres bacterias productoras de HIS como Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniea. Por lo tanto, los empaques funcionalizados con CQD, serían una innovación disruptiva; ya que podrían evitar la formación de HIS, garantizando un producto seguro e inocuo a los consumidores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L. Prester, Biogenic amines in ready-to-eat foods. Elsevier Inc., 2016.

S. Bover-Cid, M. L. Latorre-Moratalla, M. T. Veciana-Nogués, and M. C. Vidal-Carou, “Processing Contaminants: Biogenic Amines,” Encycl. Food Saf., vol. 2, pp. 381–391, 2014, doi: 10.1016/B978-0-12-378612-8.00216-X.

M. Nuñez and M. Medina, “BIOGENIC AMINES,” Encycl. Dairy Sci. Second Ed., pp. 1–4170, 2011.

P. Dalgaard and J. Emborg, Histamine fish poisoning - new information to control a common seafood safety issue. Woodhead Publishing Limited, 2009.

C. Feng, S. Teuber, and M. E. Gershwin, “Histamine (Scombroid) Fish Poisoning: a Comprehensive Review,” Clin. Rev. Allergy Immunol., vol. 50, no. 1, pp. 64–69, 2016, doi: 10.1007/s12016-015-8467-x.

M. P. Costa, B. L. Rodrigues, B. S. Frasao, and C. A. Conte-Junior, Biogenic Amines as Food Quality Index and Chemical Risk for Human Consumption, vol. 13. Elsevier Inc., 2018.

M. Schirone, P. Viscaino, R. Tofalo, and G. Suzzi, “Histamine Food Poisoning,” Handb. Exp. Pharmacol., no. January, pp. 251–263, 2015, doi: 10.1007/164.

E. Alp-Erbay, K. J. Figueroa-Lopez, J. M. Lagaron, E. Çağlak, and S. Torres-Giner, “The impact of electrospun films of poly(ε-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A,” Food Packag. Shelf Life, vol. 22, no. September, 2019, doi: 10.1016/j.fpsl.2019.100414.

Reglamento (CE) No 2073/2005, “Comisión, de 15 de noviembre de 2005 , relativo a los criterios microbiológicos aplicables a los productos alimenticios.,” 2005. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2005/2073/oj/spa.

R. Shi et al., “Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots,” Biosens. Bioelectron., vol. 167, no. August, p. 112519, 2020, doi: 10.1016/j.bios.2020.112519.

C. A. T. Toloza et al., “Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe3 +, Cu2 +, Eu3 +: Application in the analysis of spoiled tuna fish,” Microchem. J., vol. 133, pp. 448–459, 2017, doi: 10.1016/j.microc.2017.04.013.

D. Zhang, Y. Wang, J. Xie, W. Geng, and H. Liu, “Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine,” Microchim. Acta, vol. 187, no. 1, 2020, doi: 10.1007/s00604-019-3833-7.

Y. Mao, Y. Zhang, W. Hu, and W. Ye, “Carbon Dots-Modified Nanoporous Membrane and Fe3O4@Au Magnet Nanocomposites-Based FRET Assay for Ultrasensitive Histamine Detection,” 2019.

T. Chatzimitakos and C. Stalikas, Antimicrobial properties of carbon quantum dots. INC, 2020.

T. Maxwell, M. G. Nogueira Campos, S. Smith, M. Doomra, Z. Thwin, and S. Santra, Quantum dots. Elsevier Inc., 2019.

N. Vukmirovic and L. Wang, “Comprehensive Nanoscience and Technology,” Compr. Nanosci. Technol., pp. 175–211, 2011, doi: 10.1016/B978-0-12-374396-1.00085-4.

M. G. C. Pereira, E. S. Leite, G. A. L. Pereira, A. Fontes, and B. S. Santos, Quantum Dots. Elsevier Inc., 2016.

C. Carrillo, Aportaciones de los puntos cuánticos a la nanociencia y nanotecnología analítica. 2011.

A. Nair, J. T. Haponiuk, S. Thomas, and S. Gopi, “Natural carbon-based quantum dots and their applications in drug delivery: A review,” Biomed. Pharmacother., vol. 132, p. 110834, 2020, doi: 10.1016/j.biopha.2020.110834.

J. H. Qu, Q. Wei, and D. W. Sun, “Carbon dots: Principles and their applications in food quality and safety detection,” Crit. Rev. Food Sci. Nutr., vol. 58, no. 14, pp. 2466–2475, 2018, doi: 10.1080/10408398.2018.1437712.

X. Shi et al., “Review on carbon dots in food safety applications,” Talanta, vol. 194, pp. 809–821, 2019, doi: 10.1016/j.talanta.2018.11.005.

M. Sing, Carbon dots as optical nanoprobes for biosensors. Elsevier Inc., 2018.

P. Surendran, A. Lakshmanan, G. Vinitha, G. Ramalingam, and P. Rameshkumar, “Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications,” Luminescence, vol. 35, no. 2, pp. 196–202, 2020, doi: 10.1002/bio.3713.

J. Zhou, Z. Sheng, H. Han, M. Zou, and C. Li, “Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source,” Mater. Lett., vol. 66, no. 1, pp. 222–224, 2012, doi: 10.1016/j.matlet.2011.08.081.

S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents,” Chem. Commun., vol. 48, no. 70, pp. 8835–8837, 2012, doi: 10.1039/c2cc33796g.

C. Jiang, H. Wu, X. Song, X. Ma, J. Wang, and M. Tan, “Presence of photoluminescent carbon dots in Nescafe® original instant coffee: Applications to bioimaging,” Talanta, vol. 127, pp. 68–74, 2014, doi: 10.1016/j.talanta.2014.01.046.

M. Y. Pudza, Z. Z. Abidin, S. Abdul-Rashid, F. M. Yassin, A. S. M. Noor, and M. Abdullah, “Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca,” ChemistrySelect, vol. 4, no. 14, pp. 4140–4146, 2019, doi: 10.1002/slct.201900836.

H. Fan, M. Zhang, B. Bhandari, and C. hui Yang, Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection, vol. 95. Elsevier Ltd, 2020.

R. Jelinek, Carbon Quantum Dots. Synthesis, Properties and Applicatons. 2017.

S. Sagbas and N. Sahiner, Carbon dots: Preparation, properties, and application. Elsevier Ltd., 2018.

F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, and S. Yang, “Shining carbon dots: Synthesis and biomedical and optoelectronic applications,” Nano Today, vol. 11, no. 5, pp. 565–586, 2016, doi: 10.1016/j.nantod.2016.08.006.

N. Tejwan, S. K. Saha, and J. Das, “Multifaceted applications of green carbon dots synthesized from renewable sources,” Adv. Colloid Interface Sci., vol. 275, p. 102046, 2020, doi: 10.1016/j.cis.2019.102046.

M. Nadeem, T. Naveed, F. Rehman, and Z. Xu, “Determination of histamine in fish without derivatization by indirect reverse phase-HPLC method,” Microchem. J., vol. 144, no. June 2018, pp. 209–214, 2019, doi: 10.1016/j.microc.2018.09.010.

F. Cui, Y. Ye, J. Ping, and X. Sun, “Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications,” Biosens. Bioelectron., vol. 156, no. July 2019, p. 112085, 2020, doi: 10.1016/j.bios.2020.112085.

H. Li et al., “Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity,” ACS Appl. Mater. Interfaces, vol. 10, no. 32, pp. 26936–26946, 2018, doi: 10.1021/acsami.8b08832.

H. J. Jian et al., “Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis,” ACS Nano, vol. 11, no. 7, pp. 6703–6716, 2017, doi: 10.1021/acsnano.7b01023.

P. Das et al., “Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor,” Mater. Sci. Eng. C, vol. 88, no. August 2017, pp. 115–129, 2018, doi: 10.1016/j.msec.2018.03.010.

W. Kuang et al., “Antibacterial Nanorods Made of Carbon Quantum Dots-ZnO Under Visible Light Irradiation,” J. Nanosci. Nanotechnol., vol. 19, no. 7, pp. 3982–3990, 2019, doi: 10.1166/jnn.2019.16320.

Z. M. Marković et al., “Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae,” Photodiagnosis Photodyn. Ther., vol. 26, no. April, pp. 342–349, 2019, doi: 10.1016/j.pdpdt.2019.04.019.

M. Ghorbani et al., “Carbon dots-assisted degradation of some common biogenic amines: An in vitro study,” Lwt, vol. 136, no. P1, p. 110320, 2021, doi: 10.1016/j.lwt.2020.110320.

P. Devi, A. Thakur, S. K. Bhardwaj, S. Saini, P. Rajput, and P. Kumar, “Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots,” J. Mater. Sci. Mater. Electron., vol. 29, no. 20, pp. 17254–17261, 2018, doi: 10.1007/s10854-018-9819-0.

M. Shahshahanipour, B. Rezaei, A. A. Ensafi, and Z. Etemadifar, “An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug,” Mater. Sci. Eng. C, vol. 98, no. January, pp. 826–833, 2019, doi: 10.1016/j.msec.2019.01.041.

M. Asha Jhonsi and S. Thulasi, “A novel fluorescent carbon dots derived from tamarind,” Chem. Phys. Lett., vol. 661, pp. 179–184, 2016, doi: 10.1016/j.cplett.2016.08.081.

M. A. Jhonsi et al., “Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 196, no. 2017, pp. 295–302, 2018, doi: 10.1016/j.saa.2018.02.030.

M. Gagic et al., “One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity,” J. Colloid Interface Sci., vol. 580, pp. 30–48, 2020, doi: 10.1016/j.jcis.2020.06.125.

N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón, and T. J. Bandosz, “S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity,” Carbon N. Y., vol. 135, pp. 104–111, 2018, doi: 10.1016/j.carbon.2018.04.018.

A. Lakshmanan et al., “Superficial preparation of biocompatible carbon quantum dots for antimicrobial applications,” Mater. Today Proc., vol. 36, no. xxxx, pp. 171–174, 2019, doi: 10.1016/j.matpr.2020.02.694.

G. Otis et al., “Selective Labeling and Growth Inhibition of Pseudomonas aeruginosa by Aminoguanidine Carbon Dots,” ACS Infect. Dis., vol. 5, no. 2, pp. 292–302, 2019, doi: 10.1021/acsinfecdis.8b00270.

S. R. Anand et al., “Antibacterial Nitrogen-doped Carbon Dots as a Reversible ‘fluorescent Nanoswitch’ and Fluorescent Ink,” ACS Omega, vol. 4, no. 1, pp. 1581–1591, 2019, doi: 10.1021/acsomega.8b03191.

X. Dong, M. Al Awak, N. Tomlinson, Y. Tang, Y. P. Sun, and L. Yang, “Antibacterial effects of carbon dots in combination with other antimicrobial reagents,” PLoS One, vol. 12, no. 9, pp. 1–16, 2017, doi: 10.1371/journal.pone.0185324.

V. B. Kumar, M. Natan, G. Jacobi, Z. Porat, E. Banin, and A. Gedanken, “Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa,” Int. J. Nanomedicine, vol. 12, pp. 725–730, Jan. 2017, doi: 10.2147/IJN.S116150.

V. B. Kumar, I. Perelshtein, A. Lipovsky, Z. Porat, and A. Gedanken, “The sonochemical synthesis of Ga@C-dots particles,” RSC Adv., vol. 5, no. 32, pp. 25533–25540, 2015, doi: 10.1039/c5ra01101a.

S. G. Roh, A. I. Robby, P. T. M. Phuong, I. In, and S. Y. Park, “Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria,” Mater. Sci. Eng. C, vol. 97, pp. 613–623, 2019, doi: 10.1016/j.msec.2018.12.070.

Y. Yan et al., “Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light,” J. Alloys Compd., vol. 777, pp. 234–243, 2019, doi: 10.1016/j.jallcom.2018.10.191.

R. Jijie, A. Barras, J. Bouckaert, N. Dumitrascu, S. Szunerits, and R. Boukherroub, “Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects,” Colloids Surfaces B Biointerfaces, vol. 170, no. April, pp. 347–354, 2018, doi: 10.1016/j.colsurfb.2018.06.040.

X. Dong et al., “Synergistic photoactivated antimicrobial effects of carbon dots combined with dye photosensitizers,” Int. J. Nanomedicine, vol. 13, pp. 8025–8035, 2018, doi: 10.2147/IJN.S183086.

N. K. Stanković et al., “Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir-Blodgett Thin Films,” ACS Sustain. Chem. Eng., vol. 6, no. 3, pp. 4154–4163, 2018, doi: 10.1021/acssuschemeng.7b04566.

J. Chen, Z. Long, S. Wang, Y. Meng, G. Zhang, and S. Nie, “Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties,” Int. J. Biol. Macromol., vol. 139, pp. 367–376, 2019, doi: 10.1016/j.ijbiomac.2019.07.211.

R. R. Koshy, J. T. Koshy, S. K. Mary, S. Sadanandan, S. Jisha, and L. A. Pothan, “Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork,” Food Control, vol. 126, p. 108039, Aug. 2021, doi: 10.1016/j.foodcont.2021.108039.

Publicado

2021-12-31

Cómo citar

Almachi, D., & Bonilla Valladares, P. (2021). El Uso de la Nanotecnología para el desarrollo de empaques alimenticios del sector pesquero. Química Central, 7(2), 05–14. https://doi.org/10.29166/quimica.v7i2.3270

Número

Sección

Química de alimentos