Araştırma Makalesi
BibTex RIS Kaynak Göster

Environmental magnetism of Küçükçekmece Lagoon: Paleoenvironmental changes for the last 3900 years

Yıl 2023, Cilt: 9 Sayı: 3, 545 - 559, 20.09.2023
https://doi.org/10.28979/jarnas.1246766

Öz

In this study, magnetic mineralogy, mineral concentration, and grain size of sediments deposited in Küçükçekmece Lagoon, located in the northern shoreline of the Marmara Sea were determined and the paleoenvironmental evolution of the lagoon for the last 3900 years were investigated based on environmental magnetism. For this purpose, high-resolution mineral magnetic analyses including measurements of magnetic susceptibility (κLF), remanent
magnetizations (anhysteretic and isothermal), and thermomagnetic analysis were carried out in three cores (KCL12P1, KCL12P2, KCL12P3) taken from 20 and 17 m depths of Küçükçekmece Lagoon. According to mineral magnetic analysis and lithological description, three units (units A, B, and C) which were deposited in lagoon sediments were determined. Unit A is characterized by low magnetic susceptibility and mostly consists of detritic paramagnetic minerals (siderite) and low concentration of fine-grained ferrimagnetic minerals (magnetite). Unit B is dominated by greigite and characterized by distinctively high magnetic susceptibility and remanent magnetization. Unit C is determined as coarse-grained and high-coercive ferrimagnetic minerals. According to the environmental magnetism of Küçükçekmece Lagoon; unit A deposited under humid climatic condition between the years 3750-3700 BP, 3600-3350 BP, 3240-1800 BP, 1240 BP present. Units B and C deposited dry climatic conditions during the years
3883-3750 BP, 3700-3600 BP, 3350-3240 BP, 1800-1240 BP. High greigite concentration in unit B is related to the Marmara seawater intrusion onto fresh-water sediments end of every dry climatic condition between the years of 3780-3750 BP, 3620-3600 BP, 3300-3240 BP, and 1300-1240 BP.

Proje Numarası

22799, 45018, 41415, 30199, 23013

Kaynakça

  • Akçer Ön, S. (2011). Küçükçekmece Lagünü, Yeniçağa, Uludağ Buzul Ve Bafa Gölleri’nin (Batı Türkiye) Geç Holosen’deki İklim Kayıtları: Avrupa Ve Orta Doğu İklim Kayıtları İle Karşılaştırılması. Doktora tezi, İstanbul Teknik Üniversitesi.
  • Akçer Ön, S., Çağatay, N. ve Sakınç, M. (2011). ‘‘Küçükçekmece Lagünü’nde (İstanbul) “Küçük Buzul Çağı” ve “Orta Çağ Ilık Dönemi” çökel kayıtları’’, İTÜ Dergisi/D Mühendislik, 10: 4, 131-140.
  • Altınok, Y., Alpar, B.Ş., Özer, N. ve Aykurt, H. (2011). Revision of the Tsunami Catalogue affecting Turkish coasts and surrounding regions. Natural Hazards and Earth System Sciences, 11: 273-291. doi: https://doi.org/10.5194/nhess-11-273-2011
  • Altun, Ö., Saçan, M.T. ve Erdem, A.K. (2009). “Water quality and heavy metal monitoring in water and sediment samples of the Küçükçekmece Lagoon, Turkey (2002–2003)”, Environ Monit Assess, 151, 345–362. doi: https://doi.org/10.1007/s10661-008-0276-8
  • Arıç, C. (1955). Haliç ve Küçükçekmece Gölü bölgesinin Jeolojisi: İTÜ Maden Fak. Doktora Tezi, 48 s.
  • Arsebük, G. (1998). Pleistosen Arkeolojisi İle İlgili Son Çalışmalara 1997 Gözüyle Özet Bir Bakış. TÜBA-AR Türkiye Bilimler Akademisi Arkeoloji Dergisi , (1) , 9-25
  • Aydıngün, Ş. ve Öniz, H. (2008). ‘‘İstanbul-Küçükçekmece Kıyıları Arkeolojik Yüzey Araştırması, 12 Sualtı Altı Ve Bilim Teknolojileri Toplantısı’’, SBT, Bildiri kitapçığı, 38.
  • Aydıngün, Ş., Güldoğan, E., Heyd, V., Öniz, H. ve Planken, Ü.Y. (2011). ‘‘Küçükçekmece Göl Havzası İlk Dönem Kazı Çalışmaları (2009 Yılı)’’ , 32.Kazı Sonuçları Toplantısı, 32. Kazı, Araştırma ve Arkeometri Sempozyumu, 1, 46-57.
  • Berner, R. ve Raiswell, R. (1984). C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12 (6): 365–368. doi: https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  • Bertrand, S., Doner, L., Akçer Ön, S., Sancar, U., Schudack, U., Mischke, S., Çagatay, M. N. ve Leroy, S. (2011). Sedimentary record of coseismic subsidence in Hersek coastal lagoon (Izmit Bay, Turkey) and the late Holocene activity of the North Anatolian Fault. Geochem. Geophys. Geosyst.,12/6. doi: https://doi.org/10.1029/2011gc003511
  • Blakemore, R. P. (1975). Magnetotactic bacteria. Science, 190, 377-9.
  • Bloemendal, J., King, J.W., Hall, F.R. ve Doh, S.H. (1992). Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res., 97, 4361–4375. doi: https://doi.org/10.1029/91JB03068
  • Dearing, J. (1999). Magnetic susceptibility. In, Environmental magnetism: a practical guide, In: Walden, J., Oldfield, F., Smith, J., (Eds). Technical guide, No. 6. Quaternary Research Association, London, pp. 35-62.
  • Dekkers, M.J. (1997). Environmental magnetism: an introduction. Geologie an Mijnbouw, 76, 163-182. doi: https://doi.org/10.1023/A:1003122305503
  • Deng, C., Zhu, R., Verosub, K.L., Singer, M.J. ve Vidic, N.J. (2004). Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res., 109/B1, B01103. doi: https://doi.org/10.1029/2003JB002532
  • Dunlop D.J. ve Xu, S. (1993). A comparison of methods of granulometry and domain structure determination. EOS, 74, Fall meeting supplement, 203.
  • Dunlop, D.J. (1995). Magnetism in rocks. Journal of Geophysical Research, 100, 2161-2174 doi: https://doi.org/10.1029/94JB02624
  • Ellwood, B.B., Balsam, W., Burkart, B., Long, G.J. ve M.L. Buhl. (1986). Anomalousm agneticp ropertiesin rocks containing the mineral siderite: paleomagnetic implications. J. Geophys.Res., 91, 12779-12790. doi: https://doi.org/10.1029/JB091iB12p12779
  • Evens, M.E. ve Heller, F. (2003). Environmental Magnetism Principles and Applications of Enviromagnetics. Amsterdam: Academic Press. ISBN-10 ‏ : ‎ 0124112439
  • Farrand W. R. ve McMahon J.P. (1997). History of the Sedimentary Infilling of Yarimburgaz Cave, Turkey. Geoarchaeology: An International Journal, Vol. 12, No. 6, 537–565. doi: https://doi.org/10.1002/(SICI)1520-6548(199709)12:6<537::AID-GEA3>3.0.CO;2-%23
  • Geiss, C.E. ve Banerjee, S.K. (1997). A multi parameter rock magnetic record of the last glacial-interglacial paleoclimate from south-central Illinois. Earth and Planet. Sci. Lett., 152, 203-216. doi: https://doi.org/10.1016/S0012-821X(97)00133-7
  • Gönenç, İ. E., Baykal, B.B., İnce, O. ve Aşıkoğlu, O. (1997). Ecosystem Modelling of Coastal Lagoons for Sustainable Management - A Case Study: Küçükçekmece Lagoon, Turkey, International Journal of Salt Lake Research, 6(2), 91-105. doi: https://doi.org/10.1007/bf02441887
  • Gürevin, C. (2010). Küçükçekmece Gölü sedimanından besin tuzu salınımının doğal ve laboratuvar ortamında karşılaştırılmalı olarak incelenmesi. Doktora tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Haltia-Hovi, E., Nowaczyk, N. ve Saarinen, T. (2010). Holocene palaeomagnetic secular varition recorded inmultiple lake sediments cores from eastern Finland. Geophys. J. Int., 180, 609–622. doi: https://doi.org/10.1111/j.1365-246X.2009.04456.x
  • Higgitt, S.R., Oldfield, F. ve Appleby, P.G. (1991). The record of land use change soil erosion in the Holocene sediments of the Petit Lac d’Annecy, Eastren France. The Holocene, 1, 14-28. doi: https://doi.org/10.1177/095968369100100104
  • Hunt, C.P., Moskowıtz, B.M. ve Banerjee, S.K. (1995). Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3,189–204.
  • Inoue, S., Hayashida, A., Kato, M., Fukusawa, H. ve Yasuda, Y. (2004). Environmental magnetism of brackish-water sediments from Lake Tougou-ike on the Japan Sea coast. Quat. Int., 123–125, 35–41. doi: https://doi.org/10.1016/j.quaint.2004.02.006
  • Jones, M.D., Roberts, C.N., Leng, M.J. ve Turkeş, M. (2006). A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34(5): 361–364. doi: https://doi.org/10.1130/G22407.1
  • King, J., Banerjee, S.K., Marvin, J. ve Özdemir, Ö. (1982). A comparison of different magnetic methods for determining teh relative grain size of mağnetite in natural materials: some results from lake sediments. Earth and Planetary Science Letters, 59, 404-419. doi: https://doi.org/10.1016/0012-821X(82)90142-X
  • Krupp R.E. (1991). Smythite, greigite, and mackinawite: new observations on natural low-temperature iron sulfides. M. Pagel, J.L. Leroy (Eds.), Source, transport and deposition of metals, Balkema, Rotterdam. 193-195.
  • Ku, H., Chen, Y., Hsieh, C., Liu, T. ve Liu, J.C. (2001). Paleoenvironment study at Yihju, southwestern Taiwan: A case on geochemical analysis of sulfur and carbon. West. Pac. Earth Sci., 1(2), 175–186.
  • Kükrer S., Çakır, Ç., Kaya H. ve Erginal, A. E. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 20:4, 385-401. doi: https://doi.org/10.1080/15275922.2019.1657985
  • Lowrie W ve Heller F. (1982). Magnetic Properties of Marine Limestones. Reviews of Geophysics and Space Physic,s 20 (2):171-192 doi: https://doi.org/10.1029/RG020i002p00171.
  • Maher, B.A. ve Thompson, R. (1999). Quaternary Climates, Environments and Magnetism. 390 pp, Cambridge, New York, Melbourne: Cambridge University Press.
  • Makaroğlu Ö., Çağatay M. N., Orbay N. ve Pesonen L. J. (2016). The radiocarbon reservoir age of Lake Van, eastern Turkey. Quaternary International, cilt.408, ss.113-122, doi: https://doi.org/10.1016/j.quaint.2015.11.008.
  • Makaroğlu, Ö. (2017). Küçükçekmece Lagünü’nün Çevre Manyetizması ve Paleoiklimsel Yorumu. İstanbul Küçükçekmece Göl Havzası Kazıları (Bathonea). Editor. Aydıngün, Ş. Arkeoloji ve Sanat Yayınları. ISBN: 978-605-396-453-7
  • Makaroğlu, Ö., Çağatay M. N., Nowaczyk N. R., Pesonen L. J. ve Orbay N. (2018). Discrimination of Holocene tephra units in Lake Van using mineral magnetic analysis. Quaternary International, 486, 44-56. doi: https://doi.org/10.1016/j.quaint.2018.03.012
  • Makaroğlu Ö., Nowaczyk N. R., Eriş K. K. ve Çağatay M. N. (2020). High-resolution palaeomagnetic record from Sea of Marmara sediments for the last 70 ka. Geophysical Journal International, 222/3, 2024-2039. doi: https://doi.org/10.1093/gji/ggaa281
  • Makaroğlu Ö. (2021). A Holocene paleomagnetic record from Kucukcekmece Lagoon, NW Turkey, Turkish Journal of Earth Science. 30/5, 639-652. doi: https://doi.org/10.3906/yer-2102-13
  • Makaroğlu Ö., Küçükdemirci M., Karlıoğlu Kılıç N., Acar D., Gürel A., Yılmaz Dağdeviren R., et al. (2022). Holocene sedimentary history of South Danamandıra Lake: a peatland in west of İstanbul, Çatalca Peninsula, NW Turkey. Turkish Journal of Earth Science, cilt.31, sa.1, ss.410-423, 202. doi: https://doi.org/10.55730/1300-0985.1809
  • Meriç, E., Sakınç, M., Özdoğan, M. ve Açkurt, F. (1988). Yarımburgaz Mağarası Kazılarında Gözlenen Mollusk Kavkıları Hakkında. Arkeoloji ve Sanat, 40/41, 28-32.
  • Nolan, S.R., Bloemandal, J., Boyle, J.F., Jones, R.T., Oldfield F. ve Whitney, M. (1999). Mineral magnetic and geochemical records of late Glacial climatic change from two northwest European carbonate lakes. Journal of Paleolimnology, 22, 97-107.
  • doi: https://doi.org/10.1023/A:1008097518004 Nowaczyk, N., Melles, M., Minyuk, M. (2007). A revised age model for core PG1351 from Lake El’gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations. J. Paleo. Limnol., 37, 65–76. doi: https://doi.org/10.1007/s10933-006-9023-8
  • Orland, I., Bar-Matthewes, M., Kita, N.,T, Ayalon, A., Matthews, A., Valley, J.W. (2009). Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research, 71, 27–3. doi: https://doi.org/10.1016/j.yqres.2008.08.005
  • Ortega Guerrero, B., Thompson, R., Urrutia Fucugauchi, J. (2000). Magnetic properties of lake sediments from Lake Chalco, central Mexico, and their palaeoenvironmental implications. Journal of Quaternary Science, 15, 127-140. doi: https://doi.org/10.1002/(SICI)1099-1417(200002)15:2<127::AID-JQS474>3.0.CO;2-Z
  • Pan, Y., Zhu, R., Banerjee, S., Gill, J ve Williams, Q. (2000). Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. Journal of Geophysical Research, Vol. 105, No. B1, Pages 783-794. doi: https://doi.org/10.1029/1999JB900358
  • Peck, J.A. ve King, J.W. (1996). Magnetofossils in the sediment of Lake Baikal, Siberia. Earth and Planetary Science Letters, 140, 159-171. doi: https://doi.org/10.1016/0012-821X(96)00027-1
  • Pehlivan, R. ve Yilmaz, O. (2004). Geochemistry and mineralogy of bottom sediments in the Kuçukçekmece Lake, Istanbul, Turkey. Geochemistry International, 42, 1099–1106.
  • Reynolds, R.L. ve King, J.W. (1995). Magnetic records of climate change. Reviews of Geophysics, 33/S1, 101-110. doi: https://doi.org/10.1029/95RG00354
  • Roberts, A.P. ve Weaver, R. (2005). Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S). Earth and Planetary Science Letters, 231, 3–4, 263-277. https://doi.org/10.1016/j.epsl.2004.11.024 Roberts AP (2015). Magnetic mineral diagenesis. Earth Science Review (151): 1-47. doi: 10.1016/j.earscirev.2015.09.010
  • Roberts, A.P., Chang, L., Rowan C.J., Horng, V-S. ve Florindo, F. (2011). Magnetic properties of sedimentary greigite (Fe3S4): an update. Reviews of Geophysics, Vol. 49, RG1002. doi: https://doi.org/10.1029/2010RG000336
  • Rosenbaum, J.G., Reynolds, R.L., Adam, D.P., Drexler, J., Sarna-Wojcicki, A.M., Whitney, G.C. (1996). A middle Pleistocene climate record from Buck Lake, Cascade range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry and pollen. Geol. Soc. Am. Bull., 108, 1328–1341. doi: https://doi.org/10.1130/0016-7606 (1996)108<1328:ROMPCC>2.3.CO;2
  • Sagnotti L., Roberts A.P., Weaver, R., Verosub, K., Florindo F., Pike, C.R., Clayton, T. ve Wilson, G.S. (2005). Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 60, 89–100, https://doi.org/10.1111/j.1365-246X.2005.02485.x
  • Sayar, A.S. (1954). Haliç_Küçükçekmece Gölü arasındaki bölgenin Jeolojik Haritası. Snowball, I. F. ve Thompson R. (1988). The occurrence of greigite in sediments from Loch Lomond, J. Quat. Sci.,3, 121–125, doi: https://doi.org/10.1002/jqs.3390030203
  • Snowball, I.F. (1993). Geochemical control of magnetite dissolution in sub-arctic lake sediments and the implications for environmental magnetism. Journal of Quaternary Science, 8, 339-346. doi: https://doi.org/10.1002/jqs.3390080405
  • Snowball, I.F., Sandgren, P. ve Peterson, G. (1999). The mineral magnetic properties of an annually laminated Holocene lake sediment sequence in northern Sweden. The Holocene, 9, 353–362. doi: https://doi.org/10.1191/095968399670520633
  • Thompson, R., Batterbee, R.W., O’sullıvan, P.E., Oldfıeld, F. (1975). Magnetic susceptibility of lake sediments. Limnology and Oceanography, 20, 687-698. doi: https://doi.org/10.4319/lo.1975.20.5.0687
  • Thompson, R., Bloemendal, J., Dearing, J.A., Oldfield, F., Rummery, T.A., Stober, J.C., Turner, G.M. (1980). Environmental Application of Magnetic Minerals. Science, 207, 481-485. doi: https://doi.org/10.1126/science.207.4430.481
  • Thompson, R. ve Oldfield, F. (1986). Environmental Magnetism. London: Allen & Unwin. Verosub, K.L. ve Roberts, A.P. (1995). Environmental Magnetism: Past, present and future. Journal of Geophysical Research, 100, 2175-2192. doi: https://doi.org/10.1029/94JB02713
  • Walden, J., Oldfield, F., Smith, J. (1999). Environmental Magnetism: A Practical Guide, Technical Guide No. 6, London, Quaternary Research Association, 0-907780-42-3. doi: https://doi.org/10.1016/016366000561060 Williams, D.F., Peck, J.A., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V.A. (1997). Lake Baikal Record of continental climate response to orbital insolation during the past 5 million yrs. Science, 278, 1114– 1117. doi: https://doi.org/10.1126/science.278.5340.1114

Küçükçekmece Lagünü'nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri

Yıl 2023, Cilt: 9 Sayı: 3, 545 - 559, 20.09.2023
https://doi.org/10.28979/jarnas.1246766

Öz

Bu çalışmada, günümüzden önce (GÖ) 3900 yıl boyunca, Marmara Denizi’nin kuzeyinde yer alan, Küçükçekmece Lagünü’nde depolanan sedimanlarda manyetik mineraloji, mineral yoğunluğu ve tane boyu değişimleri belirlenerek lagünün paleo-ortam koşulları incelenmiştir. Bu amaçla, Küçükçekmece Lagünü’nün 20 ve 17 m. derinliğinden alınan üç adet karotta (KCL12P1, KCL12P2, KCL12P3) manyetik duyarlılık (κLF), kalıntı mıknatıslanma (anhisteretik ve eş -ısıl) şiddetleri ve termomanyetik ölçümleri içeren yüksek çözünürlükte manyetik mineral analizleri yapılmıştır. Manyetik mineral analizleri ve litolojik gözlemlere göre, lagün sedimanlarında üç farklı birim (birim A, B ve C) tanımlanmıştır. Birim A; düşük manyetik duyarlılığa sahip, düşük yoğunlukta ince tane boylu ferrimanyetik (manyetit) minerallerle birlikte çoğunlukla detritik kökenli paramanyetikler minerallerce (siderit) baskın bir birimdir. Birim B; yüksek manyetik duyarlılık, kalıntı mıknatıslanma değerleri ve termomanyetik analizlerle kolayca ayırt edilen, demir sülfür (greigit) içeriği yüksek olan bir birimdir. Birim C ise kaba taneli ve yüksek koersiviteye sahip ferrimanyetik minerallerce baskın bir birim olarak tanımlanmıştır. Küçükçekmece Lagünü-nün çevre manyetizmasına göre, birim A GÖ 3750-3700, 3600-3350, 3240-1800, 1240-günümüz arasında görece yağmurlu; birim B ve C ise GÖ 3883-3750, 3700-3600, 3350-3240, 1800-1240 yılları arasında kurak iklim koşullarının hâkim olduğu dönemlerde oluşmuştur. Lagünde her kurak dönemin sonuna doğru GÖ 3780-3750, 3620-3600, 3300-3240 ve 1300-1240 yılları arasında, greigit mineralinin yoğunlaştığı birim B oluşmuştur. Bu sonuç, nehir girdisinin azalmasıyla beraber, lagünde Marmara Deniz sularının yoğunlaştığı koşulları desteklemektedir.

Destekleyen Kurum

İstanbul Üniversitesi_Cerrahpaşa Bilimsel Araştırma Projeleri Birimi

Proje Numarası

22799, 45018, 41415, 30199, 23013

Kaynakça

  • Akçer Ön, S. (2011). Küçükçekmece Lagünü, Yeniçağa, Uludağ Buzul Ve Bafa Gölleri’nin (Batı Türkiye) Geç Holosen’deki İklim Kayıtları: Avrupa Ve Orta Doğu İklim Kayıtları İle Karşılaştırılması. Doktora tezi, İstanbul Teknik Üniversitesi.
  • Akçer Ön, S., Çağatay, N. ve Sakınç, M. (2011). ‘‘Küçükçekmece Lagünü’nde (İstanbul) “Küçük Buzul Çağı” ve “Orta Çağ Ilık Dönemi” çökel kayıtları’’, İTÜ Dergisi/D Mühendislik, 10: 4, 131-140.
  • Altınok, Y., Alpar, B.Ş., Özer, N. ve Aykurt, H. (2011). Revision of the Tsunami Catalogue affecting Turkish coasts and surrounding regions. Natural Hazards and Earth System Sciences, 11: 273-291. doi: https://doi.org/10.5194/nhess-11-273-2011
  • Altun, Ö., Saçan, M.T. ve Erdem, A.K. (2009). “Water quality and heavy metal monitoring in water and sediment samples of the Küçükçekmece Lagoon, Turkey (2002–2003)”, Environ Monit Assess, 151, 345–362. doi: https://doi.org/10.1007/s10661-008-0276-8
  • Arıç, C. (1955). Haliç ve Küçükçekmece Gölü bölgesinin Jeolojisi: İTÜ Maden Fak. Doktora Tezi, 48 s.
  • Arsebük, G. (1998). Pleistosen Arkeolojisi İle İlgili Son Çalışmalara 1997 Gözüyle Özet Bir Bakış. TÜBA-AR Türkiye Bilimler Akademisi Arkeoloji Dergisi , (1) , 9-25
  • Aydıngün, Ş. ve Öniz, H. (2008). ‘‘İstanbul-Küçükçekmece Kıyıları Arkeolojik Yüzey Araştırması, 12 Sualtı Altı Ve Bilim Teknolojileri Toplantısı’’, SBT, Bildiri kitapçığı, 38.
  • Aydıngün, Ş., Güldoğan, E., Heyd, V., Öniz, H. ve Planken, Ü.Y. (2011). ‘‘Küçükçekmece Göl Havzası İlk Dönem Kazı Çalışmaları (2009 Yılı)’’ , 32.Kazı Sonuçları Toplantısı, 32. Kazı, Araştırma ve Arkeometri Sempozyumu, 1, 46-57.
  • Berner, R. ve Raiswell, R. (1984). C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12 (6): 365–368. doi: https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  • Bertrand, S., Doner, L., Akçer Ön, S., Sancar, U., Schudack, U., Mischke, S., Çagatay, M. N. ve Leroy, S. (2011). Sedimentary record of coseismic subsidence in Hersek coastal lagoon (Izmit Bay, Turkey) and the late Holocene activity of the North Anatolian Fault. Geochem. Geophys. Geosyst.,12/6. doi: https://doi.org/10.1029/2011gc003511
  • Blakemore, R. P. (1975). Magnetotactic bacteria. Science, 190, 377-9.
  • Bloemendal, J., King, J.W., Hall, F.R. ve Doh, S.H. (1992). Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res., 97, 4361–4375. doi: https://doi.org/10.1029/91JB03068
  • Dearing, J. (1999). Magnetic susceptibility. In, Environmental magnetism: a practical guide, In: Walden, J., Oldfield, F., Smith, J., (Eds). Technical guide, No. 6. Quaternary Research Association, London, pp. 35-62.
  • Dekkers, M.J. (1997). Environmental magnetism: an introduction. Geologie an Mijnbouw, 76, 163-182. doi: https://doi.org/10.1023/A:1003122305503
  • Deng, C., Zhu, R., Verosub, K.L., Singer, M.J. ve Vidic, N.J. (2004). Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res., 109/B1, B01103. doi: https://doi.org/10.1029/2003JB002532
  • Dunlop D.J. ve Xu, S. (1993). A comparison of methods of granulometry and domain structure determination. EOS, 74, Fall meeting supplement, 203.
  • Dunlop, D.J. (1995). Magnetism in rocks. Journal of Geophysical Research, 100, 2161-2174 doi: https://doi.org/10.1029/94JB02624
  • Ellwood, B.B., Balsam, W., Burkart, B., Long, G.J. ve M.L. Buhl. (1986). Anomalousm agneticp ropertiesin rocks containing the mineral siderite: paleomagnetic implications. J. Geophys.Res., 91, 12779-12790. doi: https://doi.org/10.1029/JB091iB12p12779
  • Evens, M.E. ve Heller, F. (2003). Environmental Magnetism Principles and Applications of Enviromagnetics. Amsterdam: Academic Press. ISBN-10 ‏ : ‎ 0124112439
  • Farrand W. R. ve McMahon J.P. (1997). History of the Sedimentary Infilling of Yarimburgaz Cave, Turkey. Geoarchaeology: An International Journal, Vol. 12, No. 6, 537–565. doi: https://doi.org/10.1002/(SICI)1520-6548(199709)12:6<537::AID-GEA3>3.0.CO;2-%23
  • Geiss, C.E. ve Banerjee, S.K. (1997). A multi parameter rock magnetic record of the last glacial-interglacial paleoclimate from south-central Illinois. Earth and Planet. Sci. Lett., 152, 203-216. doi: https://doi.org/10.1016/S0012-821X(97)00133-7
  • Gönenç, İ. E., Baykal, B.B., İnce, O. ve Aşıkoğlu, O. (1997). Ecosystem Modelling of Coastal Lagoons for Sustainable Management - A Case Study: Küçükçekmece Lagoon, Turkey, International Journal of Salt Lake Research, 6(2), 91-105. doi: https://doi.org/10.1007/bf02441887
  • Gürevin, C. (2010). Küçükçekmece Gölü sedimanından besin tuzu salınımının doğal ve laboratuvar ortamında karşılaştırılmalı olarak incelenmesi. Doktora tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Haltia-Hovi, E., Nowaczyk, N. ve Saarinen, T. (2010). Holocene palaeomagnetic secular varition recorded inmultiple lake sediments cores from eastern Finland. Geophys. J. Int., 180, 609–622. doi: https://doi.org/10.1111/j.1365-246X.2009.04456.x
  • Higgitt, S.R., Oldfield, F. ve Appleby, P.G. (1991). The record of land use change soil erosion in the Holocene sediments of the Petit Lac d’Annecy, Eastren France. The Holocene, 1, 14-28. doi: https://doi.org/10.1177/095968369100100104
  • Hunt, C.P., Moskowıtz, B.M. ve Banerjee, S.K. (1995). Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3,189–204.
  • Inoue, S., Hayashida, A., Kato, M., Fukusawa, H. ve Yasuda, Y. (2004). Environmental magnetism of brackish-water sediments from Lake Tougou-ike on the Japan Sea coast. Quat. Int., 123–125, 35–41. doi: https://doi.org/10.1016/j.quaint.2004.02.006
  • Jones, M.D., Roberts, C.N., Leng, M.J. ve Turkeş, M. (2006). A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34(5): 361–364. doi: https://doi.org/10.1130/G22407.1
  • King, J., Banerjee, S.K., Marvin, J. ve Özdemir, Ö. (1982). A comparison of different magnetic methods for determining teh relative grain size of mağnetite in natural materials: some results from lake sediments. Earth and Planetary Science Letters, 59, 404-419. doi: https://doi.org/10.1016/0012-821X(82)90142-X
  • Krupp R.E. (1991). Smythite, greigite, and mackinawite: new observations on natural low-temperature iron sulfides. M. Pagel, J.L. Leroy (Eds.), Source, transport and deposition of metals, Balkema, Rotterdam. 193-195.
  • Ku, H., Chen, Y., Hsieh, C., Liu, T. ve Liu, J.C. (2001). Paleoenvironment study at Yihju, southwestern Taiwan: A case on geochemical analysis of sulfur and carbon. West. Pac. Earth Sci., 1(2), 175–186.
  • Kükrer S., Çakır, Ç., Kaya H. ve Erginal, A. E. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 20:4, 385-401. doi: https://doi.org/10.1080/15275922.2019.1657985
  • Lowrie W ve Heller F. (1982). Magnetic Properties of Marine Limestones. Reviews of Geophysics and Space Physic,s 20 (2):171-192 doi: https://doi.org/10.1029/RG020i002p00171.
  • Maher, B.A. ve Thompson, R. (1999). Quaternary Climates, Environments and Magnetism. 390 pp, Cambridge, New York, Melbourne: Cambridge University Press.
  • Makaroğlu Ö., Çağatay M. N., Orbay N. ve Pesonen L. J. (2016). The radiocarbon reservoir age of Lake Van, eastern Turkey. Quaternary International, cilt.408, ss.113-122, doi: https://doi.org/10.1016/j.quaint.2015.11.008.
  • Makaroğlu, Ö. (2017). Küçükçekmece Lagünü’nün Çevre Manyetizması ve Paleoiklimsel Yorumu. İstanbul Küçükçekmece Göl Havzası Kazıları (Bathonea). Editor. Aydıngün, Ş. Arkeoloji ve Sanat Yayınları. ISBN: 978-605-396-453-7
  • Makaroğlu, Ö., Çağatay M. N., Nowaczyk N. R., Pesonen L. J. ve Orbay N. (2018). Discrimination of Holocene tephra units in Lake Van using mineral magnetic analysis. Quaternary International, 486, 44-56. doi: https://doi.org/10.1016/j.quaint.2018.03.012
  • Makaroğlu Ö., Nowaczyk N. R., Eriş K. K. ve Çağatay M. N. (2020). High-resolution palaeomagnetic record from Sea of Marmara sediments for the last 70 ka. Geophysical Journal International, 222/3, 2024-2039. doi: https://doi.org/10.1093/gji/ggaa281
  • Makaroğlu Ö. (2021). A Holocene paleomagnetic record from Kucukcekmece Lagoon, NW Turkey, Turkish Journal of Earth Science. 30/5, 639-652. doi: https://doi.org/10.3906/yer-2102-13
  • Makaroğlu Ö., Küçükdemirci M., Karlıoğlu Kılıç N., Acar D., Gürel A., Yılmaz Dağdeviren R., et al. (2022). Holocene sedimentary history of South Danamandıra Lake: a peatland in west of İstanbul, Çatalca Peninsula, NW Turkey. Turkish Journal of Earth Science, cilt.31, sa.1, ss.410-423, 202. doi: https://doi.org/10.55730/1300-0985.1809
  • Meriç, E., Sakınç, M., Özdoğan, M. ve Açkurt, F. (1988). Yarımburgaz Mağarası Kazılarında Gözlenen Mollusk Kavkıları Hakkında. Arkeoloji ve Sanat, 40/41, 28-32.
  • Nolan, S.R., Bloemandal, J., Boyle, J.F., Jones, R.T., Oldfield F. ve Whitney, M. (1999). Mineral magnetic and geochemical records of late Glacial climatic change from two northwest European carbonate lakes. Journal of Paleolimnology, 22, 97-107.
  • doi: https://doi.org/10.1023/A:1008097518004 Nowaczyk, N., Melles, M., Minyuk, M. (2007). A revised age model for core PG1351 from Lake El’gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations. J. Paleo. Limnol., 37, 65–76. doi: https://doi.org/10.1007/s10933-006-9023-8
  • Orland, I., Bar-Matthewes, M., Kita, N.,T, Ayalon, A., Matthews, A., Valley, J.W. (2009). Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research, 71, 27–3. doi: https://doi.org/10.1016/j.yqres.2008.08.005
  • Ortega Guerrero, B., Thompson, R., Urrutia Fucugauchi, J. (2000). Magnetic properties of lake sediments from Lake Chalco, central Mexico, and their palaeoenvironmental implications. Journal of Quaternary Science, 15, 127-140. doi: https://doi.org/10.1002/(SICI)1099-1417(200002)15:2<127::AID-JQS474>3.0.CO;2-Z
  • Pan, Y., Zhu, R., Banerjee, S., Gill, J ve Williams, Q. (2000). Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. Journal of Geophysical Research, Vol. 105, No. B1, Pages 783-794. doi: https://doi.org/10.1029/1999JB900358
  • Peck, J.A. ve King, J.W. (1996). Magnetofossils in the sediment of Lake Baikal, Siberia. Earth and Planetary Science Letters, 140, 159-171. doi: https://doi.org/10.1016/0012-821X(96)00027-1
  • Pehlivan, R. ve Yilmaz, O. (2004). Geochemistry and mineralogy of bottom sediments in the Kuçukçekmece Lake, Istanbul, Turkey. Geochemistry International, 42, 1099–1106.
  • Reynolds, R.L. ve King, J.W. (1995). Magnetic records of climate change. Reviews of Geophysics, 33/S1, 101-110. doi: https://doi.org/10.1029/95RG00354
  • Roberts, A.P. ve Weaver, R. (2005). Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S). Earth and Planetary Science Letters, 231, 3–4, 263-277. https://doi.org/10.1016/j.epsl.2004.11.024 Roberts AP (2015). Magnetic mineral diagenesis. Earth Science Review (151): 1-47. doi: 10.1016/j.earscirev.2015.09.010
  • Roberts, A.P., Chang, L., Rowan C.J., Horng, V-S. ve Florindo, F. (2011). Magnetic properties of sedimentary greigite (Fe3S4): an update. Reviews of Geophysics, Vol. 49, RG1002. doi: https://doi.org/10.1029/2010RG000336
  • Rosenbaum, J.G., Reynolds, R.L., Adam, D.P., Drexler, J., Sarna-Wojcicki, A.M., Whitney, G.C. (1996). A middle Pleistocene climate record from Buck Lake, Cascade range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry and pollen. Geol. Soc. Am. Bull., 108, 1328–1341. doi: https://doi.org/10.1130/0016-7606 (1996)108<1328:ROMPCC>2.3.CO;2
  • Sagnotti L., Roberts A.P., Weaver, R., Verosub, K., Florindo F., Pike, C.R., Clayton, T. ve Wilson, G.S. (2005). Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 60, 89–100, https://doi.org/10.1111/j.1365-246X.2005.02485.x
  • Sayar, A.S. (1954). Haliç_Küçükçekmece Gölü arasındaki bölgenin Jeolojik Haritası. Snowball, I. F. ve Thompson R. (1988). The occurrence of greigite in sediments from Loch Lomond, J. Quat. Sci.,3, 121–125, doi: https://doi.org/10.1002/jqs.3390030203
  • Snowball, I.F. (1993). Geochemical control of magnetite dissolution in sub-arctic lake sediments and the implications for environmental magnetism. Journal of Quaternary Science, 8, 339-346. doi: https://doi.org/10.1002/jqs.3390080405
  • Snowball, I.F., Sandgren, P. ve Peterson, G. (1999). The mineral magnetic properties of an annually laminated Holocene lake sediment sequence in northern Sweden. The Holocene, 9, 353–362. doi: https://doi.org/10.1191/095968399670520633
  • Thompson, R., Batterbee, R.W., O’sullıvan, P.E., Oldfıeld, F. (1975). Magnetic susceptibility of lake sediments. Limnology and Oceanography, 20, 687-698. doi: https://doi.org/10.4319/lo.1975.20.5.0687
  • Thompson, R., Bloemendal, J., Dearing, J.A., Oldfield, F., Rummery, T.A., Stober, J.C., Turner, G.M. (1980). Environmental Application of Magnetic Minerals. Science, 207, 481-485. doi: https://doi.org/10.1126/science.207.4430.481
  • Thompson, R. ve Oldfield, F. (1986). Environmental Magnetism. London: Allen & Unwin. Verosub, K.L. ve Roberts, A.P. (1995). Environmental Magnetism: Past, present and future. Journal of Geophysical Research, 100, 2175-2192. doi: https://doi.org/10.1029/94JB02713
  • Walden, J., Oldfield, F., Smith, J. (1999). Environmental Magnetism: A Practical Guide, Technical Guide No. 6, London, Quaternary Research Association, 0-907780-42-3. doi: https://doi.org/10.1016/016366000561060 Williams, D.F., Peck, J.A., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V.A. (1997). Lake Baikal Record of continental climate response to orbital insolation during the past 5 million yrs. Science, 278, 1114– 1117. doi: https://doi.org/10.1126/science.278.5340.1114
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Jeoloji (Diğer)
Bölüm Makaleler
Yazarlar

Özlem Makaroglu 0000-0001-7629-5747

Proje Numarası 22799, 45018, 41415, 30199, 23013
Erken Görünüm Tarihi 19 Eylül 2023
Yayımlanma Tarihi 20 Eylül 2023
Gönderilme Tarihi 2 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 3

Kaynak Göster

APA Makaroglu, Ö. (2023). Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri. Journal of Advanced Research in Natural and Applied Sciences, 9(3), 545-559. https://doi.org/10.28979/jarnas.1246766
AMA Makaroglu Ö. Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri. JARNAS. Eylül 2023;9(3):545-559. doi:10.28979/jarnas.1246766
Chicago Makaroglu, Özlem. “Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl Boyunca Paleo-Ortam değişimleri”. Journal of Advanced Research in Natural and Applied Sciences 9, sy. 3 (Eylül 2023): 545-59. https://doi.org/10.28979/jarnas.1246766.
EndNote Makaroglu Ö (01 Eylül 2023) Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri. Journal of Advanced Research in Natural and Applied Sciences 9 3 545–559.
IEEE Ö. Makaroglu, “Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri”, JARNAS, c. 9, sy. 3, ss. 545–559, 2023, doi: 10.28979/jarnas.1246766.
ISNAD Makaroglu, Özlem. “Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl Boyunca Paleo-Ortam değişimleri”. Journal of Advanced Research in Natural and Applied Sciences 9/3 (Eylül 2023), 545-559. https://doi.org/10.28979/jarnas.1246766.
JAMA Makaroglu Ö. Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri. JARNAS. 2023;9:545–559.
MLA Makaroglu, Özlem. “Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl Boyunca Paleo-Ortam değişimleri”. Journal of Advanced Research in Natural and Applied Sciences, c. 9, sy. 3, 2023, ss. 545-59, doi:10.28979/jarnas.1246766.
Vancouver Makaroglu Ö. Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri. JARNAS. 2023;9(3):545-59.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).