Element-based ecological and human health risk assessment in a lagoon system in a densely populated basin

Authors

  • Dilek Aykir İzmir Katip Çelebi University
  • Şakir Fural Kırşehir Ahi Evran University
  • Serkan Kükrer İzmir Katip Çelebi University
  • Yunus Emre Mutlu Sakarya University

DOI:

https://doi.org/10.26881/oahs-2023.1.01

Keywords:

element contamination, Dalyan and Poyraz lagoons, sediment, geographic information systems

Abstract

This study analysed the ecological deterioration and health risk in sediment samples taken from Dalyan and Poyraz Lagoons in the Karacabey floodplain of Turkey, which is under pressure from agriculture, industry and settlement activities. Multi-element analyses were performed with ICP-MS on the surface and core sediment samples from the lagoons. Total organic carbon, chlorophyll degradation products and carbonate analyses were performed to determine the transport and illuviation dynamics of the elements. While Pb and Zn showed moderate enrichment at some sampling points, no enrichment of the other elements was detected. According to ecological risk analysis data, Cd and Hg posed a moderate ecological risk at some sampling points. The modified hazard quotient data indicated very high contamination of Ni, a high level of As contamination and significant Cr contamination. A carcinogenic health risk was detected from Ni, Cr and As due to the lithological characteristics of the basin. It was concluded that the lithological characteristics, the agricultural and mining activities carried out in the Susurluk Basin – which is drained by Koca Stream – and domestic and industrial waste contributed to the higher element concentrations in the Karacabey floodplain.

Downloads

Download data is not yet available.

References

Akay, A. E., Gencal, B., & Taş, İ. (2018). Determination of the Linden (Tilia L.). Forests by Using GIS and Remote Sensing. 4 th International Non-Wood Forest Products Symposium 4-6 October 2018 Bursa/TURKEY E-ISBN: 978-605-9332-04-0.

Al-Solaimani, S. G., Abohassan, R. A., Alamri, D. A., Yang, X., Rinklebe, J., & Shaheen, S. M. (2022). Assessing the risk of toxic metals contamination and phytoremediation potential of mangrove in three coastal sites along the Red Sea. Marine Pollution Bulletin, 176, 113412. https://doi.org/10.1016/j.marpolbul.2022.113412 PMID:35168071.

Alamri, D. A., Al-Solaimani, S. G., Abohassan, R. A., Rinklebe, J., & Shaheen, S. M. (2021). Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea, Saudi Arabia. Environmental Geochemistry and Health, 43(11), 4819–4830. https://doi.org/10.1007/s10653-021-00956-5 PMID:34041655.

Ali, M. M., Ali, M. L., Bhuyan, M. S., Islam, M. S., Rahman, M. Z., Alam, M. W., Das, M., Mustary, S., & Islam, M. N. (2022). Spatiotemporal variation and toxicity of trace metals in commercially important fish of the tidal Pasur River in Bangladesh. Environmental Science and Pollution Research International, 29(26), 40131–40145. https://doi.org/10.1007/s11356-022-18821-y PMID:35118591.

Arienzo, M., Masuccio, A. A., & Ferrara, L. (2013). Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (southeast France). Archives of Environmental Contamination and Toxicology, 65(3), 396–406. https://doi.org/10.1007/s00244-013-9915-3 PMID:23712770.

Benson, N. U., Adedapo, A. E., Fred-Ahmadu, O. H., Williams, A. B., Udosen, E. D., Ayejuyo, O. O., & Olajire, A. A. (2018). A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX, 5, 268–276. https://doi.org/10.1016/j.mex.2018.03.005 PMID:30038896.

Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187(5), 306. https://doi.org/10.1007/s10661-015-4563-x PMID:25925159.

Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M. A., & Türkmen, A. (2022). Integrated Spatial Distribution and Multivariate Statistical Analysis for Assessment of Ecotoxicological and Health Risks of Sediment Metal Contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, and Soil Pollution, 233(6), 1–21. https://doi.org/10.1007/s11270-022-05670-1.

Di Beneditto, A. P. M., Semensato, X. E. G., Carvalho, C. E. V., & Rezende, C. E. (2019). Trace metals in two commercial shrimps from southeast Brazil: Baseline records before large port activities in coastal waters. Marine Pollution Bulletin, 146, 667–670. https://doi.org/10.1016/j.marpolbul.2019.07.028 PMID:31426206.

EPA. (2009). Risk Assessment Guidance for the Super Fund (RAGS): Part E. United States Environmental Protection Agency. https://www.epa.gov/risk/risk-assessment-guidancesuperfund-rags-part-e#background.

Fallahzadeh, R. A., Ghaneian, M. T., Miri, M., & Dashti, M. M. (2017). Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research International, 24(32), 24790–24802. https://doi.org/10.1007/s11356-017-0102-3 PMID:28913756.

Fural, Ş., Kükrer, S., & Cürebal, İ. (2020). Geographical information systems based ecological risk analysis of metal accumulation in sediments of İkizcetepeler Dam Lake (Turkey). Ecological Indicators, 119, 106784. https://doi.org/10.1016/j.ecolind.2020.106784.

Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44(1), 249–253. https://doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D.

Gomes, M. P., & Soares, A. M. (2013). Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia, 68(2), 223–230. https://doi.org/10.2478/s11756-013-0005-9.

González, I., Águila, E., & Galán, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental geology, 52(8), 1581–1593. https://doi.org/10.1007/s00254-006-0602-9.

GUBRETAS. (2021). N-ZN 15. Retrieved June 15, 2022 from https://www.gubretas.com.tr/urun/n-zn-15/.

Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

Hefni, H. H., Nagy, M., Azab, M. M., & Hussein, M. H. (2020). O-Acylation of chitosan by l-arginine to remove the heavy metals and total organic carbon (TOC) from wastewater. Egyptian Journal of Petroleum, 29(1), 31–38. https://doi.org/10.1016/j.ejpe.2019.10.001.

Howie, M. G., Jackson, A. K., & Cristol, D. A. (2018). Spatial extent of mercury contamination in birds and their prey on the floodplain of a contaminated river. The Science of the Total Environment, 630, 1446–1452. https://doi.org/10.1016/j.scitotenv.2018.02.272 PMID:29554763.

Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185(1), 729–743. https://doi.org/10.1007/s10661-012-2588-y PMID:22392618.

Islam, M. S., Idris, A. M., Islam, A. R. M. T., Ali, M. M., & Rakib, M. R. J. (2021). Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. Environmental Science and Pollution Research International, 28(48), 68585–68599. https://doi.org/10.1007/s11356-021-15353-9 PMID:34275081.

Jahan, S., & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 295–306. https://doi.org/10.1016/j.marpolbul.2018.01.036 PMID:29571376.

Jeong, H., Choi, J. Y., Lim, J., Shim, W. J., Kim, Y. O., & Ra, K. (2020). Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Marine Pollution Bulletin, 161, 111717. https://doi.org/10.1016/j.marpolbul.2020.111717 PMID:33039792.

Jiang, X., Zou, B., Feng, H., Tang, J., Tu, Y., & Zhao, X. (2019). Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. Journal of Geochemical Exploration, 196, 1–7. https://doi.org/10.1016/j.gexplo.2018.10.002.

Kowalska, N., Šigut, L., Stojanović, M., Fischer, M., Kyselova, I., & Pavelka, M. (2020). Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B, 375(1810), 20190518. https://doi.org/10.1098/rstb.2019.0518.

Kumar, S., Islam, A. R. M. T., & Hasanuzzaman, M. S.alam, R., Islam, S. M., Khan, R., . . . Idris, A. M. (2022). Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environmental Science and Pollution Research, 29(28), 42742-42767. https://doi.org/10.1007/s11356-022-18734-w.

Kükrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environmental Monitoring and Assessment, 187(7), 1-14. https://doi.org/10.1007/s10661-015-4685-1.

Liu, X., Tian, G., Jiang, D., Zhang, C., & Kong, L. (2016). Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale. Environmental Science and Pollution Research International, 23(18), 17941–17952. https://doi.org/10.1007/s11356-016-6968-7 PMID:27255314.

Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry: An International Journal, 17(4), 714-727. https://doi.org/10.1002/etc.5620170428.

Lorenzen, C. J. (1974). Chlorophyll-Degradation Products in Sediments of Black Sea: Biology. Woods Hole Oceanographic Institution Contribution, 28, 426–428.

Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723–733. https://doi.org/10.1016/S0045-6535(03)00187-5 PMID:12668031.

Maanan, M., Zourarah, B., Carruesco, C., Aajjane, A., & Naud, J. (2004). The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). Journal of African Earth Sciences, 39(3-5), 473–483. https://doi.org/10.1016/j.jafrearsci.2004.07.017.

Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology (London, England), 5(4), 253–278. https://doi.org/10.1007/BF00118995 PMID:24193815.

MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075 PMID:10790498.

Matella, M. K., & Merenlender, A. M. (2015). Scenarios for restoring floodplain ecology given changes to river flows under climate change: Case from the San Joaquin River, California. River Research and Applications, 31(3), 280–290. https://doi.org/10.1002/rra.2750.

Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017 PMID:31372352.

MTA. (2021). Mineral Research and Exploration Department. https://www.mta.gov.tr/en./

Mutlu, E., & Aydin Uncumusaoğlu, A. (2018). Analysis of spatial and temporal water pollution patterns in Terzi Pond (Kastamonu/Turkey) by using multivariate statistical methods. Fresenius Environmental Bulletin, 27(5), 2900– 2912.

Ozkan, E. Y., & Buyukisik, B. (2012). Geochemical and statistical approach for assessing heavy metal accumulation in the southern Black Sea sediments. Ekoloji, 21(83), 11–24.

Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. Environmental Science and Pollution Research International, 29, 62669–62689. https://doi.org/10.1007/s11356-022-19987-1 PMID:35411511.

Panda, D., Subramanian, V., & Panigrahy, R. (1995). Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)—A tropical coastal lagoon. Environmental geology, 26(4), 199–210.

Pehlivan, H. (2017). Investigation of Heavy Metal Amount in Sediments of South Marmara Sea (Kocasu Delta) Graduate School of Natural and Applied Sciences, Department of Environmental Engineering, Master's Thesis, Hacettepe University.

Pehlivan, H., Akbulut, A., & Varol, E. (2021). Investigation of heavy metal pollution in sediments of southern Marmara Sea (the Kocasu Delta). Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1272–1288.

Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.

Raghothama, K. G. (2005). Phosphorus and plant nutrition: An overview. Phosphorus. Agriculture and the environment, 46, 353–378. https://doi.org/10.2134/agronmonogr46.c11.

Sanei, H., Outridge, P. M., Oguri, K., Stern, G. A., Thamdrup, B., Wenzhöfer, F., Wang, F., & Glud, R. N.(2021). High mercury accumulation in deep-ocean hadal sediments. Scientific Reports, 11(1), 10970. https://doi.org/10.1038/s41598-021-90459-1 PMID:34040077.

Schlichting, E., & Blume, H. (1966). Bodenkundliches Praktikum. Verlag Paul Parey.

Sojka, M., Jaskuła, J., & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water (Basel), 11(1), 56.

Song, J., Liu, Q., & Sheng, Y. (2019). Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment, 191(3), 191. https://doi.org/10.1007/s10661-019-7311-9 PMID:30810872.

Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H. (2018). Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environmental Pollution, 241, 938–949. https://doi.org/10.1016/j.envpol.2018.05.050 PMID:29929160.

Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473.

Tepanosyan, G., Maghakyan, N., Sahakyan, L., & Saghatelyan, A. (2017). Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and Environmental Safety, 142, 257–265. https://doi.org/10.1016/j.ecoenv.2017.04.013 PMID:28431356.

Thoms, M. C. (2003). Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology, 56(3-4), 335–349. https://doi.org/10.1016/S0169-555X(03)00160-0.

Töre, Y., Ustaoğlu, F., Tepe, Y., & Kalipci, E. (2021). Levels of toxic metals in edible fish species of the Tigris River (Turkey); threat to public health. Ecological Indicators, 123, 107361. https://doi.org/10.1016/j.ecolind.2021.107361.

Turan, S. D. (1999). Mineralogical and petrographical investigations of beach deposits of Kocasu delta, KaracabeyBursa Graduate School of Natural and Applied Sciences, Master's Thesis, Ankara University.

Uluturhan, E., Kontas, A., & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 62(9), 1989–1997. https://doi.org/10.1016/j.marpolbul.2011.06.019 PMID:21764081.

USEPA. (2005). Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum U.S. Environmental Protection Agency https://www.epa.gov/sites/default/files/2013-09/ documents/cancer_guidelines_final_3-25-05.pdf.

Ustaoğlu, F., Islam, M. S., & Tokatli, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey). Arabian Journal of Geosciences, 15(7), 1–15. https://doi.org/10.1007/s12517-022-09838-1.

Ustaoğlu, F., Tepe, Y., & Aydin, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environmental Forensics, 21(2), 145–156. https://doi.org/10.1080/15275922.2020.1728433.

Wakeley, J. S., Guilfoyle, M. P., Antrobus, T. J., Fischer, R. A., Barrow, W. C., & Hamel, P. B. (2007). Ordination of breeding birds in relation to environmental gradients in three southeastern United States floodplain forests. Wetlands Ecology and Management, 15(5), 417–439. https://doi.org/10.1007/s11273-007-9040-z.

Wu, Q., Bian, F., Eller, F., Wu, M., Han, G., Yu, J., & Guan, B. (2022). Pollution levels and toxicity risks of heavy metals in different reed wetland soils following channel diversion in the Yellow River Delta. Wetlands, 42(4), 1–13. https://doi.org/110.1007/s13157-022-01548-4.

Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assessment, 186(2), 1219–1234. https://doi.org/10.1007/s10661-013-3451-5 PMID:24078143.

Zhang, G., & Bai, J. Zhau., Q., Lu, Q., Jia, j., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: levels, sources and toxic risks. Ecological Indicators, 69, 331-339. https://doi.org/10.1016/j.ecolind.2016.04.042.

Downloads

Published

2023-03-18

How to Cite

Aykir, D., Fural, Şakir, Kükrer, S., & Mutlu, Y. E. (2023). Element-based ecological and human health risk assessment in a lagoon system in a densely populated basin. Oceanological and Hydrobiological Studies, 52(1), 1–19. https://doi.org/10.26881/oahs-2023.1.01

Issue

Section

Articles