Variability levels of selected amino acids among mandarins produced in Uruguay

Main Article Content

Sofía Rezende
Sabrina Banchero
Ignacio Migues
María Veronica Cesio
Carlos Fernando Rivas
Horacio Heinzen
María Natalia Besil

Abstract

Nutraceutical properties of mandarins are of great interest to promote their consumption. The occurrence of free amino acids in foods is relevant to assess the nutritional value of it. To learn more about the amino acids’ occurrence and variability between species, a targeted metabolomics study in ‘Ellendale’, ‘Willowleaf’ and ‘Page’ varieties was performed through ion exchange liquid chromatography coupled to tandem mass spectrometry. The studied amino acids were asparagine, glutamic acid, glutamine, histidine, methionine, phenylalanine, proline, threonine and tyrosine. The difference between two consecutive seasons was evaluated, as well as the influence of fruit maturity of ‘Page’ collected in two periods of 2015. The analytical methodology was validated. The concentration of the compounds through principal component analysis, separated well apart the three cultivars in both harvests, showing a particular profile for each of them. When comparing mature and immature cultivar ‘Page’, the amino acids with higher levels in mature samples were histidine, asparagine, glutamine and glutamic acid. The profiles were different due to genetic diversity, and the climatic conditions. These results add value to citric production.

Metrics

Metrics Loading ...

Article Details

How to Cite
Rezende, S., Banchero, S., Migues, I., Cesio, M. V., Rivas, C. F., Heinzen, H., & Besil, M. N. (2021). Variability levels of selected amino acids among mandarins produced in Uruguay. Eclética Química, 46(4), 47–59. https://doi.org/10.26850/1678-4618eqj.v46.4.2021.p47-59
Section
Original articles

References

Alterman, M. A.; Hunziker, P. Amino Acid Analysis: Methods and Protocols; Springer, 2012. https://doi.org/10.1007/978-1-61779-445-2

Bringans, S.; Stoll, T.; Winfield, K.; Casey, T.; Davis, T.; Albanese, J.; Lipscombe, R. Protein Biomarker Research Pipeline for Developing Protein Biomarkers for Diabetic Kidney Disease. AB Sciex, 2011, 1–5. http://www.proteomics.com.au/wp-content/uploads/Biomarker-Pipeline-Diabetes-4250211-01.pdf (accessed 2020-06-10).

Cupisti, A.; Bolasco, P. Keto-analogues and essential aminoacids and other supplements in the conservative management of chronic kidney disease. Panminerva Med. 2017, 59 (2), 149–156. https://doi.org/10.23736/S0031-0808.16.03288-2

Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D. S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46 (W1), W486–W494. https://doi.org/10.1093/nar/gky310

Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34 (24), 4313–4314. https://doi.org/10.1093/bioinformatics/bty528

Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach; Wiley & Sons, 2009. https://doi.org/10.1002/9780470742761

EU Reference Laboratories for Residues of Pesticides (EURL). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed; SANTE/2017/11813; European Commission: Brussels, 2017. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017-fin.pdf (accessed 2020-06-11).

Fernández, E. L. Alimentos funcionales y nutracéuticos; Sociedad Española de Cardiología, 2007.

Haleem, D. J. Improving Therapeutics in Anorexia Nervosa with Tryptophan. Life Sci. 2017, 178, 87–93. https://doi.org/10.1016/j.lfs.2017.04.015

Instituto Nacional de Investigación Agropecuaria (INIA). Estación meteorológica. 2017. http://www.inia.uy/gras/Clima/Precipitación-nacional/Estación-meteorológica (accessed April 2017).

Kefford, J. F.; Chandler, B. V. The Chemical Constituents of Citrus Fruits; Academic Press, 1970.

Khan, M. K.; Zill-E-Huma; Dangles, O. A Comprehensive review on flavanones, the major citrus polyphenols. J. Food Compost. Anal. 2014, 33 (1), 85–104. https://doi.org/10.1016/j.jfca.2013.11.004

Killiny, N.; Hijaz, F. Amino acids implicated in plant defense are higher in Candidatus liberibacter asiaticus-tolerant citrus varieties. Plant Signal. Behav. 2016, 11 (4), e1171449. https://doi.org/10.1080/15592324.2016.1171449

Ladanyia, M. Citrus Fruit: Biology, Technology and Evaluation; Academic Press, 2008.

Lado, J.; Gambetta, G.; Zacarias, L. Key Determinants of Citrus Fruit Quality: Metabolites and Main Changes during Maturation. Sci. Hortic. 2018, 233, 238–248. https://doi.org/10.1016/j.scienta.2018.01.055

Lin, Q.; Wang, C.; Dong, W.; Jiang, Q.; Wang, D.; Li, S.; Chen, M.; Liu, C.; Sun, C.; Chen, K. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation. Gene 2015, 554 (1), 64–74. https://doi.org/10.1016/j.gene.2014.10.025

Migues, I.; Hodos, N.; Moltini, A. I.; Gámbaro, A.; Rivas, F.; Moyna, G.; Heinzen, H. 1H NMR metabolic profiles as selection tools of new mandarin cultivars based on fruit acceptability. Sci. Hortic. 2021, 287, 110262. https://doi.org/10.1016/j.scienta.2021.110262

Otero, A.; Grasso, R.; Goñi, C.; Pérez, E.; Rubio, L.; Maeso, D.; Bertalmío, A.; Buenahora, J.; Giambiasi, M.; Arruabarrena, A.; Lado, J.; Moltini, A. I.; Fasiolo, C.; Espino, M.; Rivas, F. Desafíos de la citricultura en el uruguay y el aporte de inia a su competitividad. Revista INIA 2020, 61, 55–68.

Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J.-P.; Morla, A.; Bouchu, D. ESI-MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun. Mass Spectrom. 2003, 17 (12), 1297–1311. https://doi.org/10.1002/rcm.1054

Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. Front. Plant Sci. 2019, 10, 1167. https://doi.org/10.3389/fpls.2019.01167

Sharma, V.; Singh, L.; Verma, N.; Kalra, G. The Nutraceutical Amino Acids: Nature’s Fortification for Robust Health. Br. J. Pharm. Res. 2016, 11 (3), 1–20. https://doi.org/10.9734/BJPR/2016/24415

Torres, G. A. M.; Gimenes, M. A.; Rosa Junior, V. E., Quecini, V. Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis. Genet. Mol. Biol. 2007, 30 (3 Suppl.), 888–905. https://doi.org/10.1590/S1415-47572007000500018

Underwood, J. C.; Rockland, L. B. Nitrogenous constituents in citrus fruits. J. Food Sci. 1953, 18 (1–6), 17–29. https://doi.org/10.1111/j.1365-2621.1953.tb17681.x

van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006, 7, 142. https://doi.org/10.1186/1471-2164-7-142

Verpoorte, R.; Choi, Y. H.; Kim, H. K. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev. 2007, 6, 3–14. https://doi.org/10.1007/s11101-006-9031-3

Wright, M. J.; Thomas, R. L.; Stanford, P. E.; Horvath, A. R. Multiple Reaction Monitoring with Multistage Fragmentation (MRM3) Detection Enhances Selectivity for LC-MS/MS Analysis of Plasma Free Metanephrines. Clin. Chem. 2015, 61 (3), 505–513. https://doi.org/10.1373/clinchem.2014.233551

Xi, W.; Fang, B.; Zhao, Q.; Jiao, B.; Zhou, Z. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus Grandis Osbeck.) varieties. Food Chem. 2014, 161, 230–238. https://doi.org/10.1016/j.foodchem.2014.04.001

Yao, X.; Zhou, G.; Tang, Y.; Pang, H.; Qian, Y.; Guo, S.; Mo, X.; Zhu, S.; Su, S.; Qian, D.; Jin, C.; Qin, Y.; Duan, J.-a. Direct determination of underivatized amino acids from Ginkgo biloba leaves by using hydrophilic interaction ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Sep. Sci. 2013, 36 (17), 2878–2887. https://doi.org/10.1002/jssc.201201045

Zulfiqar, F.; Akram, N. A.; Ashra, M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 2020, 251, 3. https://doi.org/10.1007/s00425-019-03293-1