Complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand formed by condensation reaction of isatin with glutamic acid

Main Article Content

Wiesława Ferenc
Dariusz Osypiuk
Jan Sarzyński
Halina Głuchowska

Abstract

The complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand (H2L=C13H12N2O5) formed by condensation reaction of isatin and glutamic acid were synthesized. Their physico-chemical properties were characterized using elemental analysis, XRF, XRD, FTIR, TG–DSC and TG–FTIR methods and magnetic measurements (Gouy’s and SQUID-VSM methods). The complexes were obtained in crystalline forms (monoclinic or triclinic) with the formulae: M(LH)2·nH2O for Mn(II), Ni(II) and Zn(II) and ML·nH2O for Co(II) and Cu(II), where LH=C13H11N2O5, L-=C13H10N2O52–, n = 1 for Mn(II), Cu(II) and Zn(II), n = 2 for Co(II) and n = 3 for Ni(II). In air at 293–1173 K they decompose in three steps forming finally the oxides of the appropriate metals. The gaseous decomposition products were identified as: H2O, CO2, CO, hydrocarbons and N2O. The magnetic moment values for complexes (except Zn(II) complex) show their paramagnetic properties with the ferro- and antiferromagnetic interactions between central ions. The compounds of Mn(II) and Co(II) are high spin complexes with weak ligand field. In Co(II) and Cu(II) complexes two carboxylate groups take part in the metal ion coordination while in those of Mn(II), Ni(II) and Zn(II) only one carboxylate anion coordinates to central ion.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ferenc, W., Osypiuk, D., Sarzyński, J., & Głuchowska, H. (2020). Complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand formed by condensation reaction of isatin with glutamic acid. Eclética Química, 45(3), 12–27. https://doi.org/10.26850/1678-4618eqj.v45.3.2020.p12-27
Section
Original articles

References

Medvedev, A., Buneeva, O., Glover. V., Biological targets for isatin and its analogues: Implications for therapy, Biologics 1 (2) (2007) 151-162. https://pubmed.ncbi.nlm.nih.gov/19707325/.

Matesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M., Vine, K. L., N-phenethyl and N-naphthylmethyl isatins and analogues as in vitro cytotoxic agents, Bioorganic & Medicinal Chemistry 16 (6) (2008) 3118-3124. https://doi.org/10.1016/j.bmc.2007.12.026.

Pandeya, S. N., Smitha, S., Jyoti, M., Sridhar, S. K., Biological activities of isatin and its derivatives, Acta Pharmaceutica 55 (1) (2005) 27-46. https://pubmed.ncbi.nlm.nih.gov/15907222/.

Abadi, A. H., Abou-Seri, S. M., Abdel-Rahman, D. E., Klein, C., Lozach, O., Meijer, L., Synthesis of 3-substituted-2-oxoindole analoguesand their evaluation as kinase inhibitors,anticancer and antiangiogenic agents, European Journal of Medicinal Chemistry 41 (3) (2006) 296-305. https://doi.org/10.1016/j.ejmech.2005.12.004.

Verma, M., Pandeya, S. N., Singh, K. N., Stables, J. P., Anticonvulsant Activity of Schiff Bases of Isatin Derivatives, Acta Pharmaceutica 54 (1) (2004) 49-56. https://pubmed.ncbi.nlm.nih.gov/15050044/.

Bal, T. R., Anand, B., Yogeeswari, P., Sriram, D., Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives, Bioorganic & Medicinal Chemistry Letters 15 (20) (2005) 4451-4455. https://doi.org/10.1016/j.bmcl.2005.07.046.

Cerhiaro, G., Ferreira, A. M. C., Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents, Journal of the Brazilian Chemical Society 17 8 (2006) 1473-1485. https://doi.org/10.1590/S0103-50532006000800003.

Saranya, S., Haribabu, J., Palakkeezhillam, V. N. V., Jerome, P., Gomathi, K., Rao, K. K., Babu, V. H. H. S., Karvembu, R., Gayathri, D., Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones, Journal of Molecular Structure 1198 (2019) 126904. https://doi.org/10.1016/j.molstruc.2019.126904.

Gao, F., Ye, L., Wang, Y., Kong, F., Zhao, S., Xiao, J., Huang, G., Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis, European Journal of Medicinal Chemistry 183 (2019) 111678. https://doi.org/10.1016/j.ejmech.2019.111678.

Medvedev, A. E., Clow, A., Sandler, M., Glover, V., Isatin: a link between natriuretic peptides and monoamines, Biochemical Pharmacology 52 (3) (1996) 385-391. https://doi.org/10.1016/0006-2952(96)00206-7.

Medvedev, A E., Buneeva, O. A., Kopylov, A. T., Gnedenko, O. V., Medvedeva, M. V., Kozin, S. A., Ivanov, A. S., Zgoda, V. G., Makarov A. A., The Effects of endogenous non-peptide molecule isatin and hydrogen peroxide on proteomic profiling of rat brain amyloid-β binding proteins: relevance to Alzheimer’s disease, International Journal of Molecular Sciences 16 (1) (2015) 476-495. https://doi.org/10.3390/ijms16010476.

Bergman, J., Lindström, J.-O., Tilstam, U., The structure and properties of some indolic constituents in Couroupita guianensis aubl, Tetrahedron 41 (14) (1985) 2879-2881. https://doi.org/10.1016/S0040-4020(01)96609-8.

Kandel, E. R., The Biology of Memory: A Forty-Year Perspective, Journal of Neuroscience 29 (41) (2009) 12748-12756. https://doi.org/10.1523/JNEUROSCI.3958-09.2009.

Silva, J. F. M., Garden, S. J., Pinto, A. C., The Chemistry of Isatins: a Review from 1975 to 1999, Journal of the Brazilian Chemical Society 12 (3) (2001) 273-324. https://doi.org/10.1590/S0103-50532001000300002.

Almeida, M. R., Leitão, G. G., Silva, B. V., Barbosa, J. P., Pinto, A. C., Counter-current chromatography separation of isatin derivatives using the Sandmeyer methodology, Journal of the Brazilian Chemical Society 21 (4) (2010) 764-769. https://doi.org/10.1590/S0103-50532010000400025.

Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrowb, J. H., Chibale, K., Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, Bioorganic & Medicinal Chemistry Letters 13 (20) (2003) 3527-3530. https://doi.org/10.1016/S0960-894X(03)00756-X.

Baluja, S., Bhalodia, R., Bhatt, M., Vekariya, N., Gajera, R., Solubility of a pharmacological intermediate drug isatin in different solvents at various temperatures, International Letters of Chemistry, Physics and Astronomy 17 (2013) 36-46. https://doi.org/10.18052/www.scipress.com/ILCPA.17.36.

Ferrari, M. B., Capacchi, S., Bisceglie, F., Pelosi, G., Tarasconi, P., Synthesis and characterization of square planar nickel(II) complexes with p-fluorobenzaldehyde thiosemicarbazone derivatives, Inorganica Chimica Acta 312 (1-2) (2001) 81-87. https://doi.org/10.1016/S0020-1693(00)00339-X.

Singh, H. L., Synthesis and characterization of tin(II) complexes of fluorinated Schiff bases derived from amino acids, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 76 (2) (2010) 253-258. https://doi.org/10.1016/j.saa.2010.03.029.

Singh, H. L., Synthesis, spectral, and 3D molecular modeling of tin(II) and organotin(IV) complexes of biologically active Schiff bases having nitrogen and sulfur donor ligands, Phosphorus, Sulfur, and Silicon and the Related Elements 184 (7) (2009) 1768-1778. https://doi.org/10.1080/10426500802340236.

Nath, M., Singh, H., Eng, G., Song, X., Kumar, A., Syntheses, characterization and biological activity of diorganotin(IV) derivatives of 2-amino-6-hydroxypurine (guanine), Inorganic Chemistry Communications 12 (10) (2009) 1049-1052. https://doi.org/10.1016/j.inoche.2009.08.019.

Tangoulis, V., Lalia-Kantouri, M., Gdaniec, M., Papadopoulos, C., Miletic, V., Czapik, A., New type of single chain magnet: pseudo-one-dimensional chainof high-spin Co(II) exhibiting ferromagnetic intrachain interactions, Inorganic Chemistry 52 (11) (2013) 6559-6569. https://doi.org/10.1021/ic400557f.

Ade, S. B., Deshpande, M. N., Deshmukh, J. H., Synthesis and characterization of transition metal complexes of schiff base derived from isatin and 2-amino, 4-chloro benzoic acid, Rasãyan J Chem. 5 (1) (2012) 10-15. http://rasayanjournal.co.in/vol-5/issue-1/3.pdf.

Singh, H. L., Singh, J. B., Synthesis and characterization of new lead(II) complexes of Schiff bases derived from amino acids, Research on Chemical Intermediates 39 (5) (2013) 1997-2009. https://doi.org/10.1007/s11164-012-0732-5.

Figgis, B. N., Nyholm, R. S., A convenient solid for calibration of the Gouy magnetic susceptibility apparatus, Journal of the Chemical Society (1958) 4190-4191. http://garfield.library.upenn.edu/classics1982/A1982NT91100001.pdf.

Muche, S., Harms, K., Burghaus, O., Hołyńska, M., A gap is filled: First structures of enantiopure iron(III) complexes with Schiff base ligands derived from ortho-vanillin and L-glutamine or L-glutamic acid, Polyhedron 144 (2018) 66-74. https://doi.org/10.1016/j.poly.2017.12.013.

Wang, Y., Li, P., A new fluorescent sensor containing glutamic acid for Fe3+ and its resulting complex as a secondary sensor for PPi in purely aqueous solution, New Journal of Chemistry 41 (10) (2017) 4234-4240. https://doi.org/10.1039/C7NJ00913E.

Andrezálová, L., Plšíková, J., Janočková, J., Koňariková, K., Žitňanová, I., Kohútová, M., Kožurková, M., DNA/BSA binding ability and genotoxic effect of mono- and binuclear copper (II) complexes containing a Schiff base derived from salicylaldehyde and D, L-glutamic acid, Journal of Organometallic Chemistry 827 (2017) 67-77. https://doi.org/10.1016/j.jorganchem.2016.11.007.

Muche, S., Harms, K., Biernasiuk, A., Malm, A., Popiołek, Ł., Hordyjewska, A., Olszewska, A., Hołynska, M., New Pd(II) schiff base complexes derived from ortho-vanillin and L-tyrosine or L-glutamic acid: Synthesis, characterization, crystal structures and biological properties, Polyhedron 151 (2018) 465-477. https://doi.org/10.1016/j.poly.2018.05.056.

Muche, S., Levacheva, I., Samsonova, O., Biernasiuk, A., Malm, A., Lonsdale, R., Popiołek, Ł., Bakowsky, U., Hołynska, M., Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex, Journal of Molecular Structure 1127 (2017) 231-236. https://doi.org/10.1016/j.molstruc.2016.07.100.

Mehrotra, R. C., Bohra, R., Metal Carboxylates, Academic Press, London, 1983, pp. 137-145. ISBN-10: 0124881602.

Nikolaev, A. V., Logvinienko, A. V., Myachina, L. I., Thermal Analysis, Academic Press, New York, 1969, pp. 58-90.

Paulik, F., Special Trends in Thermal Analysis, John Wiley and Sons, Chichester, 1995, pp. 139-150. ISBN: 9780471957690.

Silverstein, R. M., Morrill, T. C., Bassler, C., Spectrometric Identification of Organic Compounds, John Wiley and Sons, New York, 1991, pp. 99-120. ISBN: 978-0-470-61637-6.

Bridson, A. K., Inorganic Spectroscopic Methods, Oxford University Press, New York, 1988, pp. 75-98. ISBN: 9780198559498.

Łagiewka, E., Bojarski, Z., X-ray structural analysis, Polish Scientific Publisher, Warsaw, 1988.

Boultif, A., Louer, D. J., Powder pattern indexing with the dichotomy method, Journal of Applied Crystallography 37 (2004) 724-731. https://doi.org/10.1107/S0021889804014876.

Maruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y., Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand, Journal of the Brazilian Chemical Society 16 (4) (2005) 783-789. https://doi.org/10.1590/S0103-50532005000500016.

Rathore, K., Singh, R. K. R., Singh, H. B., Structural, spectroscopic and biological aspects of O, N- donor Schiff base ligand and its Cr(III), Co(II), Ni(II) and Cu(II) complexes synthesized through green chemical approach, Journal of Chemistry 7 (S1) (2010) S566–S572. https://doi.org/10.1155/2010/521843.

Kumar, B., Prasad, K. K., Srivastawa, S. K., Synthesis of oxygen bridged complexes of Cu(II) or Ni(II)-salicylaldoxime with alkali metal salts of some organic acids and studies on their antimicrobial activities, Oriental Journal of Chemistry 26 (4) (2010) 1413-1418. http://www.orientjchem.org/pdf/vol26no4/OJC_Vol26_No4_p_1413-1418.pdf.

Malik, S., Ghosh, S., Jain, B., Synthesis, characterization and antimicrobial studies of Zn(II) complex of chemotherapeutic importance, Archives of Applied Science Research 2 (2) (2010) 304-308. https://www.scholarsresearchlibrary.com/abstract/synthesis-characterization-and-antimicrobial-studies-of-znii-complex-of-chemotherapeutic-importance-11120.html.

Van Vleck, J. H., The Theory of Electronic and Magnetic Susceptibilies, Oxford University Press, London, 1932, pp. 239-261. ISBN-10: 0198512430.

Kahn, O., Molecular Magnetism, Wiley-VCH, New York, 1993, pp. 287-332. ISBN-13: 978-0471188384.

Earnshaw, A., Introduction to Magnetochemistry, Academic Press, London, 1968, pp. 30-83. https://doi.org/10.1016/C2013-0-12445-2.

O’Connor, C. J., Magnetochemistry—Advances in Theory and Experimentation, In: Progress in Inorganic Chemistry, Lippard, S. J., ed., John Wiley and Sons: New York, 1982, pp. 260-270. https://doi.org/10.1002/9780470166307.ch4.

Cotton, A. F., Wilkinson, G., Advanced Inorganic Chemistry, John Wiley and Sons, New York, 1988, pp. 955-979. ISBN: 0-471-02775-8.

Ferenc, W., Sadowski, P., Tarasiuk, B., Cristóvão, B., Drzewiecka-Antonik, A., Osypiuk, D., Sarzyński, J., Complexes of selected transition metal ions with 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid: Synthesis, structure and magnetic properties, Journal of Molecular Structure 1092 (2015) 202-210. https://doi.org/10.1016/j.molstruc.2015.03.008.

Drzewiecka-Antonik, A., Ferenc, W., Wolska, A., Klepka, M. T., Cristóvao, B., Sarzyński, J., Rejmak, P., Osypiuk, D., The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid – Synthesis and structural studies, Chemical Physics Letters 667 (2017) 192-198. https://doi.org/10.1016/j.cplett.2016.11.053.

Kettle, S. F. A., Physical Inorganic Chemistry, a Coordination Chemistry Approach, Springer-Verlag, Berlin Heidelberg, 1996, pp. 30-83. ISBN: 978-3-662-25191-1.