Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 278 - 284, 20.12.2023
https://doi.org/10.26701/ems.1382590

Abstract

References

  • [1] Vijayakumar, M.D., Palaniyappan, S., Veeman, D., Tamilselvan, M., (2023). Process Optimization of Hexagonally Structured Polyethylene Terephthalate Glycol and Carbon Fiber Composite with Added Shell Walls. Journal of Materials Engineering and Performance. 32(14): 6434–47. doi: 10.1007/s11665-022-07572-z.
  • [2] Di Angelo, L., Di Stefano, P., Dolatnezhadsomarin, A., Guardiani, E., Khorram, E., (2020). A reliable build orientation optimization method in additive manufacturing: the application to FDM technology. International Journal of Advanced Manufacturing Technology. 108(1–2): 263–76. doi: 10.1007/s00170-020-05359-x.
  • [3] Stephen Oluwashola Akande., (2015). Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis. International Journal of Engineering Research And. V4(04). doi: 10.17577/ijertv4is040393.
  • [4] Kamer, M.S., Temiz, Ş., Yaykaşli, H., Kaya, A., Akay, O., (2022). Effect of Printing Speed on Fdm 3D-Printed Pla Samples Produced Using Different Two Printers. International Journal of 3D Printing Technologies and Digital Industry. 6(3): 438–48. doi: 10.46519/ij3dptdi.1088805.
  • [5] Tagliaferri, V., Trovalusci, F., Guarino, S., Venettacci, S., (2019). Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials. 12(24). doi: 10.3390/ma1224161.
  • [6] Doǧan, O., Kamer, M.S., (2023). Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters. Journal of the Faculty of Engineering and Architecture of Gazi University. 38(3): 1839–48. doi: 10.17341/gazimmfd.1122973.
  • [7] Silva, R.G., Estay, C.S., Pavez, G.M., Viñuela, J.Z., Torres, M.J., (2021). Influence of geometric and manufacturing parameters on the compressive behavior of 3d printed polymer lattice structures. Materials. 14(6). doi: 10.3390/ma14061462.
  • [8] Ali, H.M.A., Abdi, M., Sun, Y., (2022). Insight into the mechanical properties of 3D printed strut-based lattice structures. Progress in Additive Manufacturing. (0123456789). doi: 10.1007/s40964-022-00365-9.
  • [9] Qin, D., Sang, L., Zhang, Z., Lai, S., Zhao, Y., (2022). Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers. 14(5). doi: 10.3390/polym14051062.
  • [10] Zare Shiadehi, J., Zolfaghari, A., (2023). Design parameters of a Kagome lattice structure constructed by fused deposition modeling: a response surface methodology study. Iranian Polymer Journal (English Edition). 32(9): 1089–100. doi: 10.1007/s13726-023-01196-3.
  • [11] He, W., Luo, W., Zhang, J., Wang, Z., (2023). Investigation on the fracture behavior of octet-truss lattice based on the experiments and numerical simulations. Theoretical and Applied Fracture Mechanics. 125(April): 103918. doi: 10.1016/j.tafmec.2023.103918.
  • [12] Li, Y., Gu, H., Pavier, M., Coules, H., (2020). Compressive behaviours of octet-truss lattices. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(16): 3257–69. doi: 10.1177/0954406220913586.
  • [13] Song, J., Zhou, W., Wang, Y., Fan, R., Wang, Y., Chen, J., et al., (2019). Octet-truss cellular materials for improved mechanical properties and specific energy absorption. Materials and Design. 173: 107773. doi: 10.1016/j.matdes.2019.107773.
  • [14] Rahman, M.M., Sultana, J., Rayhan, S. Bin., Ahmed, A., (2023). Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: an experimental approach by Taguchi method. International Journal of Advanced Manufacturing Technology.: 1329–43. doi: 10.1007/s00170-023-12342-9.
  • [15] Dong, G., Wijaya, G., Tang, Y., Zhao, Y.F., (2018). Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Additive Manufacturing. 19: 62–72. doi: 10.1016/j.addma.2017.11.004.
  • [16] Dixit, N., Jain, P.K., (2022). Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures. Journal of Materials Engineering and Performance. 31(7): 5973–82. doi: 10.1007/s11665-022-06664-0.
  • [17] Liu, W., Song, H., Wang, Z., Wang, J., Huang, C., (2019). Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials and Design. 181: 108065. doi: 10.1016/j.matdes.2019.108065.
  • [18] Emir, E., Bahçe, E., Uysal, A., (2021). Effect of Octet-Truss Lattice Transition Geometries on Mechanical Properties. Journal of Materials Engineering and Performance. 30(12): 9370–6. doi: 10.1007/s11665-021-06096-2.
  • [19] Zisopol, D.G., Tănase, M., Portoacă, A.I., (2023). Innovative Strategies for Technical-Economical Optimization of FDM Production. Polymers. 15(18): 3787. doi: 10.3390/polym15183787.
  • [20] Jayasekara, T., Wickrama Surendra, Y., Rathnayake, M., (2022). Polylactic Acid Pellets Production from Corn and Sugarcane Molasses: Process Simulation for Scaled-Up Processing and Comparative Life Cycle Analysis. Journal of Polymers and the Environment. 30(11): 4590–604. doi: 10.1007/s10924-022-02535-w.
  • [21] Mora, S., Pugno, N.M., Misseroni, D., (2022). 3D printed architected lattice structures by material jetting. Materials Today. 59(October): 107–32. doi: 10.1016/j.mattod.2022.05.008.
  • [22] Raz, K., Chval, Z., Sedlacek, F., (2020). Compressive strength prediction of quad-diametral lattice structures. Key Engineering Materials. 847 KEM: 69–74. doi: 10.4028/www.scientific.net/KEM.847.69.
  • [23] Almetwally, A.A., (2020). Multi-objective Optimization of Woven Fabric Parameters Using Taguchi–Grey Relational Analysis. Journal of Natural Fibers. 17(10): 1468–78. doi: 10.1080/15440478.2019.1579156.
  • [24] Jagatheesan, K., Babu, K., (2023). Taguchi optimization of minimum quantity lubrication turning of AISI-4320 steel using biochar nanofluid. Biomass Conversion and Biorefinery. 13(2): 927–34. doi: 10.1007/s13399-020-01111-3.
  • [25] Abdulredha, M.M., Hussain, S.A., Abdullah, L.C., (2020). Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods. Journal of Petroleum Science and Engineering. 184(July 2019): 106463. doi: 10.1016/j.petrol.2019.106463.
  • [26] Bouteldja, A., Louar, M.A., Hemmouche, L., Gilson, L., Miranda-Vicario, A., Rabet, L., (2023). Experimental investigation of the quasi-static and dynamic compressive behavior of polymer-based 3D-printed lattice structures. International Journal of Impact Engineering. 180(May): 104640. doi: 10.1016/j.ijimpeng.2023.104640.
  • [27] Almesmari, A., Sheikh-Ahmad, J., Jarrar, F., Bojanampati, S., (2023). Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. Journal of Materials Research and Technology. 22: 1821–38. doi: 10.1016/j.jmrt.2022.12.024.
  • [28] Galeta, T., Raos, P., Stojšić, J., Pakši, I., (2016). Influence of structure on mechanical properties of 3D printed objects. Procedia Engineering. 149(June): 100–4. doi: 10.1016/j.proeng.2016.06.644.
  • [29] Sood, M., Wu, C., (2023). Influence of 3D printed structures on energy absorption 17(4): 390–405.
  • [30] Hikmat, M., Rostam, S., Ahmed, Y.M., (2021). Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering. 11: 100264. doi: 10.1016/j.rineng.2021.100264.
  • [31] Ahmad, M.N., Ishak, M.R., Mohammad Taha, M., Mustapha, F., Leman, Z., Anak Lukista, D.D., et al., (2022). Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites. Polymers. 14(11). doi: 10.3390/polym14112140.
  • [32] Wankhede, V., Jagetiya, D., Joshi, A., Chaudhari, R., (2019). Experimental investigation of FDM process parameters using Taguchi analysis. Materials Today: Proceedings. 27: 2117–20. doi: 10.1016/j.matpr.2019.09.078.

Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures

Year 2023, Volume: 7 Issue: 4, 278 - 284, 20.12.2023
https://doi.org/10.26701/ems.1382590

Abstract

This study explores the impact of printing parameters on the mechanical properties of 3D printed octet lattice structures using PLA material. Focused on optimizing layer height, print speed, and infill density, the study employed Taguchi methodology. Compressive strength and strength per mass were the key metrics analyzed. The optimized parameters, determined as 0.2 mm layer height, 90 mm/s print speed, and 100% infill density, significantly enhanced compressive strength. Infill density emerged as the most influential factor, contributing to 82.74% of the overall variation. A robust predictive model was developed, achieving a 92.06% accuracy in estimating compressive strength per mass values. These findings provide crucial guidelines for manufacturing high-strength, lightweight PLA octet lattice structures, vital in industries like aerospace and automotive. This study advances additive manufacturing, opening avenues for further research in diverse lattice structures and materials.

References

  • [1] Vijayakumar, M.D., Palaniyappan, S., Veeman, D., Tamilselvan, M., (2023). Process Optimization of Hexagonally Structured Polyethylene Terephthalate Glycol and Carbon Fiber Composite with Added Shell Walls. Journal of Materials Engineering and Performance. 32(14): 6434–47. doi: 10.1007/s11665-022-07572-z.
  • [2] Di Angelo, L., Di Stefano, P., Dolatnezhadsomarin, A., Guardiani, E., Khorram, E., (2020). A reliable build orientation optimization method in additive manufacturing: the application to FDM technology. International Journal of Advanced Manufacturing Technology. 108(1–2): 263–76. doi: 10.1007/s00170-020-05359-x.
  • [3] Stephen Oluwashola Akande., (2015). Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis. International Journal of Engineering Research And. V4(04). doi: 10.17577/ijertv4is040393.
  • [4] Kamer, M.S., Temiz, Ş., Yaykaşli, H., Kaya, A., Akay, O., (2022). Effect of Printing Speed on Fdm 3D-Printed Pla Samples Produced Using Different Two Printers. International Journal of 3D Printing Technologies and Digital Industry. 6(3): 438–48. doi: 10.46519/ij3dptdi.1088805.
  • [5] Tagliaferri, V., Trovalusci, F., Guarino, S., Venettacci, S., (2019). Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials. 12(24). doi: 10.3390/ma1224161.
  • [6] Doǧan, O., Kamer, M.S., (2023). Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters. Journal of the Faculty of Engineering and Architecture of Gazi University. 38(3): 1839–48. doi: 10.17341/gazimmfd.1122973.
  • [7] Silva, R.G., Estay, C.S., Pavez, G.M., Viñuela, J.Z., Torres, M.J., (2021). Influence of geometric and manufacturing parameters on the compressive behavior of 3d printed polymer lattice structures. Materials. 14(6). doi: 10.3390/ma14061462.
  • [8] Ali, H.M.A., Abdi, M., Sun, Y., (2022). Insight into the mechanical properties of 3D printed strut-based lattice structures. Progress in Additive Manufacturing. (0123456789). doi: 10.1007/s40964-022-00365-9.
  • [9] Qin, D., Sang, L., Zhang, Z., Lai, S., Zhao, Y., (2022). Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers. 14(5). doi: 10.3390/polym14051062.
  • [10] Zare Shiadehi, J., Zolfaghari, A., (2023). Design parameters of a Kagome lattice structure constructed by fused deposition modeling: a response surface methodology study. Iranian Polymer Journal (English Edition). 32(9): 1089–100. doi: 10.1007/s13726-023-01196-3.
  • [11] He, W., Luo, W., Zhang, J., Wang, Z., (2023). Investigation on the fracture behavior of octet-truss lattice based on the experiments and numerical simulations. Theoretical and Applied Fracture Mechanics. 125(April): 103918. doi: 10.1016/j.tafmec.2023.103918.
  • [12] Li, Y., Gu, H., Pavier, M., Coules, H., (2020). Compressive behaviours of octet-truss lattices. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(16): 3257–69. doi: 10.1177/0954406220913586.
  • [13] Song, J., Zhou, W., Wang, Y., Fan, R., Wang, Y., Chen, J., et al., (2019). Octet-truss cellular materials for improved mechanical properties and specific energy absorption. Materials and Design. 173: 107773. doi: 10.1016/j.matdes.2019.107773.
  • [14] Rahman, M.M., Sultana, J., Rayhan, S. Bin., Ahmed, A., (2023). Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: an experimental approach by Taguchi method. International Journal of Advanced Manufacturing Technology.: 1329–43. doi: 10.1007/s00170-023-12342-9.
  • [15] Dong, G., Wijaya, G., Tang, Y., Zhao, Y.F., (2018). Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Additive Manufacturing. 19: 62–72. doi: 10.1016/j.addma.2017.11.004.
  • [16] Dixit, N., Jain, P.K., (2022). Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures. Journal of Materials Engineering and Performance. 31(7): 5973–82. doi: 10.1007/s11665-022-06664-0.
  • [17] Liu, W., Song, H., Wang, Z., Wang, J., Huang, C., (2019). Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials and Design. 181: 108065. doi: 10.1016/j.matdes.2019.108065.
  • [18] Emir, E., Bahçe, E., Uysal, A., (2021). Effect of Octet-Truss Lattice Transition Geometries on Mechanical Properties. Journal of Materials Engineering and Performance. 30(12): 9370–6. doi: 10.1007/s11665-021-06096-2.
  • [19] Zisopol, D.G., Tănase, M., Portoacă, A.I., (2023). Innovative Strategies for Technical-Economical Optimization of FDM Production. Polymers. 15(18): 3787. doi: 10.3390/polym15183787.
  • [20] Jayasekara, T., Wickrama Surendra, Y., Rathnayake, M., (2022). Polylactic Acid Pellets Production from Corn and Sugarcane Molasses: Process Simulation for Scaled-Up Processing and Comparative Life Cycle Analysis. Journal of Polymers and the Environment. 30(11): 4590–604. doi: 10.1007/s10924-022-02535-w.
  • [21] Mora, S., Pugno, N.M., Misseroni, D., (2022). 3D printed architected lattice structures by material jetting. Materials Today. 59(October): 107–32. doi: 10.1016/j.mattod.2022.05.008.
  • [22] Raz, K., Chval, Z., Sedlacek, F., (2020). Compressive strength prediction of quad-diametral lattice structures. Key Engineering Materials. 847 KEM: 69–74. doi: 10.4028/www.scientific.net/KEM.847.69.
  • [23] Almetwally, A.A., (2020). Multi-objective Optimization of Woven Fabric Parameters Using Taguchi–Grey Relational Analysis. Journal of Natural Fibers. 17(10): 1468–78. doi: 10.1080/15440478.2019.1579156.
  • [24] Jagatheesan, K., Babu, K., (2023). Taguchi optimization of minimum quantity lubrication turning of AISI-4320 steel using biochar nanofluid. Biomass Conversion and Biorefinery. 13(2): 927–34. doi: 10.1007/s13399-020-01111-3.
  • [25] Abdulredha, M.M., Hussain, S.A., Abdullah, L.C., (2020). Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods. Journal of Petroleum Science and Engineering. 184(July 2019): 106463. doi: 10.1016/j.petrol.2019.106463.
  • [26] Bouteldja, A., Louar, M.A., Hemmouche, L., Gilson, L., Miranda-Vicario, A., Rabet, L., (2023). Experimental investigation of the quasi-static and dynamic compressive behavior of polymer-based 3D-printed lattice structures. International Journal of Impact Engineering. 180(May): 104640. doi: 10.1016/j.ijimpeng.2023.104640.
  • [27] Almesmari, A., Sheikh-Ahmad, J., Jarrar, F., Bojanampati, S., (2023). Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. Journal of Materials Research and Technology. 22: 1821–38. doi: 10.1016/j.jmrt.2022.12.024.
  • [28] Galeta, T., Raos, P., Stojšić, J., Pakši, I., (2016). Influence of structure on mechanical properties of 3D printed objects. Procedia Engineering. 149(June): 100–4. doi: 10.1016/j.proeng.2016.06.644.
  • [29] Sood, M., Wu, C., (2023). Influence of 3D printed structures on energy absorption 17(4): 390–405.
  • [30] Hikmat, M., Rostam, S., Ahmed, Y.M., (2021). Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering. 11: 100264. doi: 10.1016/j.rineng.2021.100264.
  • [31] Ahmad, M.N., Ishak, M.R., Mohammad Taha, M., Mustapha, F., Leman, Z., Anak Lukista, D.D., et al., (2022). Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites. Polymers. 14(11). doi: 10.3390/polym14112140.
  • [32] Wankhede, V., Jagetiya, D., Joshi, A., Chaudhari, R., (2019). Experimental investigation of FDM process parameters using Taguchi analysis. Materials Today: Proceedings. 27: 2117–20. doi: 10.1016/j.matpr.2019.09.078.
There are 32 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Mechanical Engineering (Other), Optimization in Manufacturing
Journal Section Research Article
Authors

Oğuz Tunçel 0000-0002-6886-6367

Publication Date December 20, 2023
Submission Date October 28, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Tunçel, O. (2023). Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures. European Mechanical Science, 7(4), 278-284. https://doi.org/10.26701/ems.1382590
AMA Tunçel O. Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures. EMS. December 2023;7(4):278-284. doi:10.26701/ems.1382590
Chicago Tunçel, Oğuz. “Optimizing Printing Parameters for Enhanced Mechanical Properties of 3D Printed PLA Octet Lattice Structures”. European Mechanical Science 7, no. 4 (December 2023): 278-84. https://doi.org/10.26701/ems.1382590.
EndNote Tunçel O (December 1, 2023) Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures. European Mechanical Science 7 4 278–284.
IEEE O. Tunçel, “Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures”, EMS, vol. 7, no. 4, pp. 278–284, 2023, doi: 10.26701/ems.1382590.
ISNAD Tunçel, Oğuz. “Optimizing Printing Parameters for Enhanced Mechanical Properties of 3D Printed PLA Octet Lattice Structures”. European Mechanical Science 7/4 (December 2023), 278-284. https://doi.org/10.26701/ems.1382590.
JAMA Tunçel O. Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures. EMS. 2023;7:278–284.
MLA Tunçel, Oğuz. “Optimizing Printing Parameters for Enhanced Mechanical Properties of 3D Printed PLA Octet Lattice Structures”. European Mechanical Science, vol. 7, no. 4, 2023, pp. 278-84, doi:10.26701/ems.1382590.
Vancouver Tunçel O. Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures. EMS. 2023;7(4):278-84.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter