ISSN 2415-3060 (print), ISSN 2522-4972 (online)
  • 2 of 45
Up
JMBS 2023, 8(1): 14–21
https://doi.org/10.26693/jmbs08.01.014
Medicine. Reviews

Homocysteine as a Biomarker of Vascular Pathology

Vynogradova O. M. 1, Minko L. Yu. 1, Slaba O. M. 1, Dyryk V. T. 1, Vykhtyuk T. I. 1, Batig V. M. 2
Abstract

The purpose of the study was to analyze professional literature sources devoted to the influence of homocysteine on the development of vascular disorders. The role of homocysteine as a biomarker of vascular pathology is considered. Materials and methods. Bibliosemantic and analytical methods were used in the study. The analysis of the specialized literature (47 sources) was carried out using information in the scientific-metric databases MEDLINE/PubMed, Scopus and Google Scholar. Results and discussion. Homocysteinemia is a pathological condition associated with quite serious consequences for the body; the endothelium of vessels suffers mostly: systemic endothelial dysfunction develops (including disruption of the synthesis and exchange of the endothelium-relaxing factor – nitric oxide), oxidative stress, activation of platelet aggregation, hypercoagulation occurs (due to a decrease in the activity of heparin, thrombomodulin and an increase in the activity of thromboxane A2). The prevalence of hyperhomocysteinemia in Ukraine is quite high and reaches 10% among healthy adults, 2% among young people and adolescents, from 13% to 43% in patients with cardiovascular pathology. The C677T polymorphism of the methylenetetrahydrofolate reductase gene is widespread among the population of Ukraine (40.7%). Researchers believe that hyperhomocysteinemia is an independent and modifiable risk factor for vascular pathology. Conclusion. Homocysteine is recognized as one of the markers of vascular pathology. Scientists consider the activation of oxidative stress, damage to the endothelium, stimulation of the proliferation of smooth muscle cells, and pro-inflammatory effects to be the main mechanisms of vascular damage in hyperhomocysteinemia. The described pathological changes are accompanied by a violation of the regulation of vascular tone, mostly due to a decrease in the synthesis of nitric oxide. Unbalanced synthesis of nitric oxide causes and potentiates oxidative stress, the processes of atherothrombogenesis. The professional literature presents enough scientific data that convincingly prove the role of homocysteine in the development of cardiovascular and neurological pathology. However, there is a small number of studies devoted to the relationship between hyperhomocysteinemia and periodontal diseases, and the pathogenetic mechanisms of the influence of hyperhomocysteinemia on the development of vascular disorders in coronavirus disease are not fully disclosed

Keywords: homocysteine, biomarker, vascular pathology

Full text: PDF (Ukr) 267K

References
  1. Perła-Kaján J, Twardowski T, Jakubowskі H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561-572. PMID: 17285228. https://doi.org/10.1007/s00726-006-0432-9
  2. Pentyuk NO, Kharchenko NV. Vplyv hiperhomotsysteyinemiyi ta asotsiyovanykh z neyu metabolichnykh porushen na prohresuvannya fibrozu pechinky u khvorykh na khronichni hepatyty [The influence of hyperhomocysteinemia and associated metabolic disorders on the progression of liver fibrosis in patients with chronic hepatitis]. Suchasna hastroenterolohiya. 2010;5:26-32. [Ukrainian]
  3. Nykonenko OS, Chmul KO, Nykonenko AO, Osaulenko VV, Efimenko NF. Prognostic value of homocysteine and vitamin D for patients with ischemic heart disease and multifocal atherosclerosis. Zaporozhye Med J. 2018;20(1):31-5. doi: 10.14739/23101210.2018.1.121880
  4. Shevchuk SV, Postovitenko KP, Iliuk IA, Bezsmertna HV, Bezsmertnyi YO, Kurylenko IV, et al. The relationship between homocysteine level and vitamins B12, B9 and B6 status in patients with chronic kidney disease. Wiad Lek. 2019;72(4):532-538. PMID: 31055527. https://doi.org/10.36740/WLek201904105
  5. Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev. 2019 Jan 1;99(1):555-604. PMID: 30427275. https://doi.org/10.1152/physrev.00003.2018
  6. Amores-Sánchez MI, Medina MA. Methods for the determination of plasma total homocysteine: a review. Clin Chem Lab Med. 2000 Mar;38(3):199-204. PMID: 10905754. https://doi.org/10.1515/CCLM.2000.028
  7. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem. 1993 Sep;39(9):1764-79. PMID: 8375046. https://doi.org/10.1093/clinchem/39.9.1764
  8. Al-Sadeq DW, Nasrallah GK. The Spectrum of Mutations of Homocystinuria in the MENA Region. Genes (Basel). 2020 Mar 20;11(3):330. PMID: 32245022. PMCID: PMC7140887. https://doi.org/10.3390/genes11030330
  9. Weber Hoss GR, Sperb-Ludwig F, Schwartz IVD, Blom HJ. Classical homocystinuria: A common inborn error of metabolism? An epidemiological study based on genetic databases. Mol Genet Genomic Med. 2020 Jun;8(6):e1214. PMID: 32232970. PMCID: PMC7284035. https://doi.org/10.1002/mgg3.1214
  10. Zaric BL, Obradovic M, Bajic V, Haidara MA, Jovanovic M, Isenovic ER. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948-2961. PMID: 29532755. https://doi.org/10.2174/0929867325666180313105949
  11. Rahhal-Ortuño M, Fernández-Santodomingo AS, Marín-Payá E, Aguilar-González M, Villena-Alvarado CK, Ramos-González L. Hyperhomocysteinemia and low folate levels as the only risk factors in pseudo-Foster Kennedy syndrome. J Fr Ophtalmol. 2021 Jun;44(6):e353-e356. PMID: 33608175. https://doi.org/10.1016/j.jfo.2020.09.014
  12. Kaye AD, Jeha GM, Pham AD, Fuller MC, Lerner ZI, Sibley GT, et al. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv Ther. 2020 Oct;37(10):4149-4164 PMID: 32845472. PMCID: PMC7497502. https://doi.org/10.1007/s12325-020-01474-z
  13. Capelli I, Cianciolo G, Gasperoni L, Zappulo F, Tondolo F, Cappuccilli M, et al. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients. 2019 Feb 13;11(2):383. PMID: 30781775. PMCID: PMC6413093. https://doi.org/10.3390/nu11020383
  14. Antunes LA, Machado CM, Couto AC, Lopes LB, Sena FC, Abreu FV, et al. A polymorphism in the MTRR gene is associated with early childhood caries and underweight. Caries Res. 2017;51(2):102-8. PMID: 28118645. https://doi.org/10.1159/000451037
  15. Coppedè F, Stoccoro A, Tannorella P, Migliore L. Plasma Homocysteine and Polymorphisms of Genes Involved in Folate Metabolism Correlate with DNMT1 Gene Methylation Levels. Metabolites. 2019 Dec 7;9(12):298. PMID: 31817852. PMCID: PMC6950100. https://doi.org/10.3390/metabo9120298
  16. Hiraoka M, Kagawa Y. Genetic polymorphisms and folate status. Congenit Anom (Kyoto). 2017 Sep;57(5):142-149.. PMID: 28598562 PMCID: PMC5601299. https://doi.org/10.1111/cga.12232
  17. Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, et al. Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Eur J Clin Nutr. 2020 Dec;74(12):1677-1684. PMID: 32404901. https://doi.org/10.1038/s41430-020-0657-9
  18. Perła-Kaján J, Jakubowski H. Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci. 2019 Jun 27;20(13):3140. PMID: 31252610. PMCID: PMC6651274. https://doi.org/10.3390/ijms20133140
  19. Onyemelukwe OU, Maiha BB. Hyperhomocysteinemia and folate levels in normal healthy Nigerians living in Zaria: Subanalysis of ABU homocysteine cross-sectional survey. Ann Afr Med. 2019 Jul-Sep;18(3):143-152. PMID: 31417015. PMCID: PMC6704811. https://doi.org/10.4103/aam.aam_53_18
  20. Jiang B, Yao G, Yao C, Zheng N. The effect of folate and VitB12 in the treatment of MCI patients with hyperhomocysteinemia. J Clin Neurosci. 2020 Nov;81:65-69. PMID: 33222971. https://doi.org/10.1016/j.jocn.2020.09.043
  21. Guieu R, Ruf J, Mottola G. Hyperhomocysteinemia and cardiovascular diseases. Ann Biol Clin (Paris). 2022 Feb 1;80(1):7-14. PMID: 35129442. https://doi.org/10.1684/abc.2021.1694
  22. Azdaki N, Zardast M, Anani-Sarab G, Abdorrazaghnaejad H, Ghasemian MR, Saburi A. Comparison between homocysteine, fibrinogen, PT, PTT, INR and CRP in male smokers with/without addiction to opium. Addict Health. 2017 Jan;9(1):17-23. PMID: 29026499
  23. Kawada T. Smoking, hyperhomocysteinemia, metabolic syndrome, and cardiovascular risk. Nutrition. 2021 Jan;81:111031. PMID: 33172685. https://doi.org/10.1016/j.nut.2020.111031
  24. Gökcen BB, Şanlier N. Coffee consumption and disease correlations. Crit Rev Food Sci Nutr. 2019;59(2):336-348. PMID: 28853910. https://doi.org/10.1080/10408398.2017.1369391
  25. Kang SS, Rosenson RS. Analytic Approaches for the Treatment of Hyperhomocysteinemia and Its Impact on Vascular Disease. Cardiovasc Drugs Ther. 2018 Apr;32(2):233-240. PMID: 29679304. https://doi.org/10.1007/s10557-018-6790-1
  26. Salvio G, Ciarloni A, Cutini M, Balercia G. Hyperhomocysteinemia: Focus on Endothelial Damage as a Cause of Erectile Dysfunction. Int J Mol Sci. 2021 Jan 3;22(1):418. PMID: 33401548. PMCID: PMC7795368. https://doi.org/10.3390/ijms22010418
  27. Toda N, Okamura T. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide. Pflugers Arch. 2016 Sep;468(9):1517-25. PMID: 27417104. https://doi.org/10.1007/s00424-016-1849-y
  28. Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R, et al. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci. 2021 Feb 8;22(4):1690. PMID: 33567540 PMCID: PMC7914561. https://doi.org/10.3390/ijms22041690
  29. Wu H, Wang B, Ban Q, Chen L, Yan D, Yu Y, et al. Association of total homocysteine with blood pressure in a general population of Chinese adults: a cross-sectional study in Jiangsu province, China. BMJ Open. 2018 Jun 19;8(6):e021103. PMID: 29921686. PMCID: PMC6009617. https://doi.org/10.1136/bmjopen-2017-021103
  30. Veeranki S, Gandhapudi SK, Tyagi SC. Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Can J Physiol Pharmacol. 2017 Mar;95(3):239-246. PMID: 27398734. PMCID: PMC5519337. https://doi.org/10.1139/cjpp-2015-0568
  31. Zhang T, Jiang Y, Zhang S, Tie T, Cheng Y, Su X, et al. The association between homocysteine and ischemic stroke subtypes in Chinese: A meta-analysis. Medicine (Baltimore). 2020 Mar;99(12):e19467. PMID: 32195946. PMCID: PMC7220264. https://doi.org/10.1097/MD.0000000000019467
  32. Nykonenko OS, Nykonenko AO, Chmul AO, Osaulenko VV. Vyvchennya porushennya vplyvu metabolizmu homotsysteyinu ta vitaminu D na rozvytok destruktyvnykh protsesiv sudynnoi stinky [Study of the influence of homocysteine and vitamin D metabolism disorders on the development of destructive processes of the vascular wall]. Ukrainskyi zhurnal sertsevo-sudynnoi khirurhiyi. 2020;3(40):22-7. [Ukrainian]
  33. Smith AD, Refsum H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu Rev Nutr. 2016 Jul 17;36:211-39. PMID: 27431367. https://doi.org/10.1146/annurev-nutr-071715-050947
  34. Nieraad H, Pannwitz N, Bruin N, Geisslinger G, Till U. Hyperhomocysteinemia: Metabolic Role and Animal Studies with a Focus on Cognitive Performance and Decline-A Review. Biomolecules. 2021 Oct 19;11(10):1546. PMID: 34680179. PMCID: PMC8533891. https://doi.org/10.3390/biom11101546
  35. Chen S, Honda T, Ohara T, Hata J, Hirakawa Y, Yoshida D, et al. Serum homocysteine and risk of dementia in Japan. J Neurol Neurosurg Psychiatry. 2020 May;91(5):540-546. PMID: 32234968. PMCID: PMC7231445. https://doi.org/10.1136/jnnp-2019-322366
  36. Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao-Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020 Dec;96(1142):753-758. PMID: 32563999. https://doi.org/10.1136/postgradmedj-2020-138234
  37. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020 May-Jun;14(3):247-250. PMID: 32247212. PMCID: PMC7102662. https://doi.org/10.1016/j.dsx.2020.03.013
  38. Pina A, Castelletti S. COVID-19 and Cardiovascular Disease: a Global Perspective. Curr Cardiol Rep. 2021 Aug 19;23(10):135. PMID: 34410538. PMCID: PMC8374116. https://doi.org/10.1007/s11886-021-01566-4
  39. Khalil F, Oleszak F, Stys T, Stys A. COVID-19 and Cardiovascular Disease: A Comprehensive Review. S D Med. 2022 Feb;75(2):54-60. PMID: 35704865
  40. Carpenè G, Negrini D, Henry BM, Montagnana M, Lippi G. Homocysteine in coronavirus disease (COVID-19): a systematic literature review. Diagnosis (Berl). 2022 Jun 16;9(3):306-310. PMID: 35704707. https://doi.org/10.1515/dx-2022-0042
  41. Khyts A. COVID-19: vcheni vyznachaly novi biomarkery prohresuyuchoho perebihu zakhvoryuvannya [COVID-19: scientists identified new biomarkers of the progressive course of the disease]. Ukrainskyi medychnyi chasopys . 2021. Available from: https://www.umj.com.ua/wp/wp-content/uploads/2021/03/COVID.pdf?upload=
  42. Bhardwaj S. Effect of non-surgical periodontal therapy on plasma homocysteine levels in Indian population with chronic periodontitis. J Clin Periodontol. 2015;42(3):221-227. PMID: 25644517. https://doi.org/10.1111/jcpe.12374
  43. Han DH, Shin HS, Kim MS, Paek D, Kim HD. Group of serum inflammatory markers and periodontitis-metabolic syndrome coexistence in Koreans. J Periodontol. 2012 May;83(5):612-20. PMID: 21870976. https://doi.org/10.1902/jop.2011.110304
  44. Botelho J, Machado V, Leira Y, Proença L, Mendes JJ. Periodontal Inflamed Surface Area Mediates the Link between Homocysteine and Blood Pressure. Biomolecules. 2021 Jun 12;11(6):875. PMID: 34204680. PMCID: PMC8231519. https://doi.org/10.3390/biom11060875
  45. Stanisic D, George AK, Smolenkova I, Singh M, Tyagi SC. Hyperhomocysteinemia: an instigating factor for periodontal disease. Can J Physiol Pharmacol. 2021 Jan;99(1):115-123. PMID: 32721223. https://doi.org/10.1139/cjpp-2020-0224
  46. Keceli HG, Ercan N, Karsiyaka Hendek M, Kisa U, Mesut B, et al. The effect of the systemic folic acid intake as an adjunct to scaling and root planing on clinical parameters and homocysteine and C-reactive protein levels in gingival crevicular fluid of periodontitis patients: A randomized placebo-controlled clinical trial. J Clin Periodontol. 2020 May;47(5):602-613. PMID: 32109317. https://doi.org/10.1111/jcpe.13276
  47. Kutelmakh OI. Vzayemozv'yazok vitaminu D, homotsysteyinu ta stomatolohichnykh zakhvoryuvan [Relationship between vitamin D, homocysteine and dental diseases]. Aktualni pytannya farmatsevtychnoi i medychnoi nauky ta praktyky. 2019;12(1)29)):104-12. [Ukrainian]