Journal Home > Volume 2 , Issue 4

Understanding the assembly pattern of metal nanoclusters in crystalline units at the atomic level is crucial for an in-depth understanding of their supramolecular interactions and structure–property correlations. In this study, two Au9Ag6 nanoclusters bearing a similar framework were controllably synthesized and structurally determined. By tailoring the peripheral thiol ligands from SPhpOMe to SPhoMe (HSPhpOMe = 4-methoxythiophenol, HSPhoMe = 2-methylbenzenethiol), the hierarchical assembly of cluster molecules in their superlattice varied from “ABAB” to “ABCDABCD”. Based on the atomically precise structures of the two nanoclusters, we proposed that such differences in crystalline packing modes resulted from a combination of their structural differences, including intramolecular coordination preferences (Au–P vs. Ag–Cl), steric hindrance effects of thiol ligands (SPhpOMe vs. SPhoMe), and intra-/inter-cluster interactions (C–H···π, π···π, and H···H). We also investigated the structure/assembly-dependent optical properties of the two clusters at different states and rationalized the obtained structure–property correlations at the atomic level. Moreover, this study presented an interesting case for analyzing the hierarchical assembly of metal nanoclusters, allowing an in-depth understanding of the ligand effect on the crystalline assemblies of metal nanoclusters with atomic precision.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ligand-correlated crystalline assembly of nanoclusters with atomic precision

Show Author's information Peiyao PanDi ZhangXuejuan Zou( )Xi Kang( )Manzhou Zhu ( )
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China

Abstract

Understanding the assembly pattern of metal nanoclusters in crystalline units at the atomic level is crucial for an in-depth understanding of their supramolecular interactions and structure–property correlations. In this study, two Au9Ag6 nanoclusters bearing a similar framework were controllably synthesized and structurally determined. By tailoring the peripheral thiol ligands from SPhpOMe to SPhoMe (HSPhpOMe = 4-methoxythiophenol, HSPhoMe = 2-methylbenzenethiol), the hierarchical assembly of cluster molecules in their superlattice varied from “ABAB” to “ABCDABCD”. Based on the atomically precise structures of the two nanoclusters, we proposed that such differences in crystalline packing modes resulted from a combination of their structural differences, including intramolecular coordination preferences (Au–P vs. Ag–Cl), steric hindrance effects of thiol ligands (SPhpOMe vs. SPhoMe), and intra-/inter-cluster interactions (C–H···π, π···π, and H···H). We also investigated the structure/assembly-dependent optical properties of the two clusters at different states and rationalized the obtained structure–property correlations at the atomic level. Moreover, this study presented an interesting case for analyzing the hierarchical assembly of metal nanoclusters, allowing an in-depth understanding of the ligand effect on the crystalline assemblies of metal nanoclusters with atomic precision.

Keywords: metal nanoclusters, hierarchical assembly, ligand effect, crystalline arrangement

References(58)

[1]

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

[2]

Si, W. D.; Sheng, K.; Zhang, C. K.; Wang, Z.; Zhang, S. S.; Dou, J. M.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Bicarbonate insertion triggered self-assembly of chiral octa-gold nanoclusters into helical superstructures in the crystalline state. Chem. Sci. 2022, 13, 10523–10531.

[3]

Rival, J. V.; Mymoona, P.; Lakshmi, K. M.; Nonappa; Pradeep, T.; Shibu, E. S. Self-assembly of precision noble metal nanoclusters: Hierarchical structural complexity, colloidal superstructures, and applications. Small 2021, 17, 2005718.

[4]

Huang, J. H.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Cent. Sci. 2020, 6, 1971–1976.

[5]

Huang, R. W.; Yin, J.; Dong, C. W.; Maity, P.; Hedhili, M. N.; Nematulloev, S.; Alamer, B.; Ghosh, A.; Mohammed, O. F.; Bakr, O. M. [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-level insights into cuboidal polyhydrido copper nanoclusters and their quasi-simple cubic self-assembly. ACS Mater. Lett. 2021, 3, 90–99.

[6]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[7]

Nonappa; Lahtinen, T.; Haataja, J. S.; Tero, T. R.; Häkkinen, H.; Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids. Angew. Chem., Int. Ed. 2016, 55, 16035–16038.

[8]

Nonappa; Ikkala, O. Hydrogen bonding directed colloidal self-assembly of nanoparticles into 2D crystals, capsids, and supracolloidal assemblies. Adv. Funct. Mater. 2018, 28, 1704328.

[9]

Ong, Q.; Luo, Z.; Stellacci, F. Characterization of ligand shell for mixed-ligand coated gold nanoparticles. Acc. Chem. Res. 2017, 50, 1911–1919.

[10]

Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Delivery Rev. 2012, 64, 200–216.

[11]

Higaki, T.; Li, Y. W.; Zhao, S.; Li, Q.; Li, S. T.; Du, X. S.; Yang, S.; Chai, J. S.; Jin, R. C. Atomically tailored gold nanoclusters for catalytic application. Angew. Chem., Int. Ed. 2019, 58, 8291–8302.

[12]

Zeng, C. J.; Weitz, A.; Withers, G.; Higaki, T.; Zhao, S.; Chen, Y. X.; Gil, R. R.; Hendrich, M.; Jin, R. C. Controlling magnetism of Au133(TBBT)52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem. Sci. 2019, 10, 9684–9691.

[13]

Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys. Chem. B 2001, 105, 3353–3357.

[14]

Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

[15]

Li, Y. W.; Zhou, M.; Song, Y. B.; Higaki, T.; Wang, H.; Jin, R. C. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 2021, 594, 380–384.

[16]

Zhang, W. J.; Kong, H. M.; Wu, Z. N.; Yao, Q. F.; Wang, L. N.; Qiao, L.; He, Y. J.; Qiao, X. G.; Pang, X. C.; Xie, J. P. Confined unimolecular micelles for precisely controlled in situ synthesis of stable ultrasmall metal nanocluster assemblies. Chem. Mater. 2021, 33, 5067–5075.

[17]

Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.

[18]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[19]

Alhilaly, M. J.; Huang, R. W.; Naphade, R.; Alamer, B.; Hedhili, M. N.; Emwas, A. H.; Maity, P.; Yin, J.; Shkurenko, A.; Mohammed, O. F. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 2019, 141, 9585–9592.

[20]

Sharma, S.; Chakrahari, K. K.; Saillard, J. Y.; Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475–2483.

[21]

Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

[22]

Choi, B.; Yu, J.; Paley, D. W.; Trinh, M. T.; Paley, M. V.; Karch, J. M.; Crowther, A. C.; Lee, C. H.; Lalancette, R. A.; Zhu, X. Y. et al. Van der Waals solids from self-assembled nanoscale building blocks. Nano Lett. 2016, 16, 1445–1449.

[23]

Pinkard, A.; Champsaur, A. M.; Roy, X. Molecular clusters: Nanoscale building blocks for solid-state materials. Acc. Chem. Res. 2018, 51, 919–929.

[24]

Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

[25]

Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Cocrystals of atomically precise noble metal nanoclusters. Small 2021, 17, 2003981.

[26]

Li, Y. W.; Jin, R. C. Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: Atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644.

[27]

Zeng, C. J.; Chen, Y. X.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 1580–1584.

[28]

Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications. J. Am. Chem. Soc. 2017, 139, 9994–10001.

[29]

Li, Q.; Russell, J. C.; Luo, T. Y.; Roy, X.; Rosi, N. L.; Zhu, Y.; Jin, R. C. Modulating the hierarchical fibrous assembly of Au nanoparticles with atomic precision. Nat. Commun. 2018, 9, 3871.

[30]

Chakraborty, P.; Nag, A.; Chakraborty, A.; Pradeep, T. Approaching materials with atomic precision using supramolecular cluster assemblies. Acc. Chem. Res. 2019, 52, 2–11.

[31]

Song, Y. B.; Li, Y. W.; Li, H.; Ke, F.; Xiang, J.; Zhou, C. J.; Li, P.; Zhu, M. Z.; Jin, R. C. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals marks decahedron truncation and penrose tiling surface. Nat. Commun. 2020, 11, 478.

[32]

Hou, Y. F.; Wang, Y. Q.; Xu, T. Y.; Wang, Z.; Tian, W. D.; Sun, D.; Yu, X. Y.; Xing, P. Y.; Shen, J. L.; Xin, X. et al. Synergistic multiple bonds induced dynamic self-assembly of silver nanoclusters into lamellar frameworks with tailored luminescence. Chem. Mater. 2022, 34, 8013–8021.

[33]

Wang, H.; Liu, X. Y.; Yang, W. J.; Mao, G. Y.; Meng, Z.; Wu, Z. K.; Jiang, H. L. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal-organic frameworks for enhanced catalysis. J. Am. Chem. Soc. 2022, 144, 22008–22017.

[34]

Lin, X. Z.; Liu, C.; Sun, K. J.; Wu, R. A.; Fu, X. M.; Huang, J. H. Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Res. 2019, 12, 309–314.

[35]

Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[36]

Wang, Z.; Senanayake, R.; Aikens, C. M.; Chen, W. M.; Tung, C. H.; Sun, D. Gold-doped silver nanocluster [Au3Ag38(SCH2Ph)24X5]2− (X = Cl or Br). Nanoscale 2016, 8, 18905–18911.

[37]

Han, B. L.; Wang, Z.; Gupta, R. K.; Feng, L.; Wang, S. N.; Kurmoo, M.; Gao, Z. Y.; Schein, S.; Tung, C. H.; Sun, D. Precise implantation of an archimedean Ag@Cu12 cuboctahedron into a platonic Cu4Bis(diphenylphosphino)hexane6 tetrahedron. ACS Nano 2021, 15, 8733–8741.

[38]

Kang, X.; Zhu, M. Z. Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coord. Chem. Rev. 2019, 394, 1–38.

[39]

Lei, Z.; Pei, X. L.; Jiang, Z. G.; Wang, Q. M. Cluster linker approach: Preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) clusters. Angew. Chem., Int. Ed. 2014, 53, 12771–12775.

[40]

Li, H.; Song, F.; Zhu, D. S.; Song, Y. B.; Zhou, C. J.; Ke, F.; Lu, L.; Kang, X.; Zhu, M. Z. Optical activity from anisotropic-nanocluster-assembled supercrystals in achiral crystallographic point groups. J. Am. Chem. Soc. 2022, 14, 4845–4852.

[41]

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

[42]

Gunawardene, P. N.; Corrigan, J. F.; Workentin, M. S. Golden opportunity: A clickable azide-functionalized [Au25(SR)18] nanocluster platform for interfacial surface modifications. J. Am. Chem. Soc. 2019, 141, 11781–11785.

[43]

Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.

[44]

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

[45]

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

[46]

Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

[47]

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

[48]

Pan, P. Y.; Liu, L. L.; Zhang, L. D.; Wei, X.; Tian, Y. P.; Kang, X.; Zhang, Q.; Zhu, M. Z. Control the single-, two-, and three-photon excited fluorescence of atomically precise metal nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202213016.

[49]

Chen, T.; Yang, S.; Li, Q. Z.; Song, Y. B.; Li, G.; Chai, J. S.; Zhu, M. Z. A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag70 nanocluster crystal. Nanoscale Horiz. 2021, 6, 913–917.

[50]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[51]

Bera, D.; Goswami, N. Driving forces and routes for aggregation-induced emission-based highly luminescent metal nanocluster assembly. J. Phys. Chem. Lett. 2021, 12, 9033–9046.

[52]

Murphy, C. J.; Chang, H. H.; Falagan-Lotsch, P.; Gole, M. T.; Hofmann, D. M.; Hoang, K. N. L.; McClain, S. M.; Meyer, S. M.; Turner, J. G.; Unnikrishnan, M. et al. Virus-sized gold nanorods: Plasmonic particles for biology. Acc. Chem. Res. 2019, 52, 2124–2135.

[53]

Tao, C. B.; Fan, J. Q.; Fei, W. W.; Zhao, Y.; Li, M. B. Structure and assembly of a hexanuclear AuNi bimetallic nanocluster. Nanoscale 2023, 15, 109–113.

[54]

Lipok, M.; Obstarczyk, P.; Parzyszek, S.; Wang, Y. N.; Bagiński, M.; Buergi, T.; Lewandowski, W.; Olesiak-Bańska, J. Circularly polarized luminescence from atomically precise gold nanoclusters helically assembled by liquid-crystal template. Adv. Opt. Mater. 2023, 11, 2201984.

[55]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[56]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[57]

Döllefeld, H.; Weller, H.; Eychmüller, A. Semiconductor nanocrystal assemblies: Experimental pitfalls and a simple model of particle-particle interaction. J. Phys. Chem. B 2002, 106, 5604–5608.

[58]

Zhang, J.; Rowland, C.; Liu, Y. Z.; Xiong, H.; Kwon, S.; Shevchenko, E.; Schaller, R. D., Prakapenka, V. B., Tkachev, S.; Rajh, T. Evolution of self-assembled ZnTe magic-sized nanoclusters. J. Am. Chem. Soc. 2015, 137, 742–749.

File
0035_ESM1.pdf (1,000.5 KB)
0035_ESM2_Checkcif_of_Au9Ag6.pdf (139.6 KB)
0035_ESM3_Au9Ag6.cif (6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 June 2014
Revised: 27 August 2023
Accepted: 08 September 2023
Published: 22 September 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 21631001, 21871001, 22101001, and 22201001), the Ministry of Education, the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-053), and the Scientific Research Program of Universities in Anhui Province (No. 2022AH030009).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return