Journal Home > Volume 2 , Issue 2

Interfacial solar evaporation (ISE) is a promising technology to relieve worldwide freshwater shortages owing to its high energy conversion efficiency and environmentally sustainable potential. So far, many innovative materials and evaporators have been proposed and applied in ISE to enable highly controllable and efficient solar-to-thermal energy conversion. With rational design, solar evaporators can achieve excellent energy management for lowering energy loss, harvesting extra energy, and efficiently utilizing energy in the system to improve freshwater production. Beyond that, a strategy of reducing water vaporization enthalpy by introducing molecular engineering for water-state regulation has also been demonstrated as an effective approach to boost ISE. Based on these, this article discusses the energy nexus in two-dimensional (2D) and three-dimensional (3D) evaporators separately and reviews the strategies for design and fabrication of highly efficient ISE systems. The summarized work offers significant perspectives for guiding the future design of ISE systems with efficient energy management, which pave pathways for practical applications.


menu
Abstract
Full text
Outline
About this article

Recent strategies for constructing efficient interfacial solar evaporation systems

Show Author's information Yida Wang1,3Junqing Hu2Li Yu2( )Xuan Wu3Yingying Zhang1( )Haolan Xu3( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, SA 5095, Australia

Abstract

Interfacial solar evaporation (ISE) is a promising technology to relieve worldwide freshwater shortages owing to its high energy conversion efficiency and environmentally sustainable potential. So far, many innovative materials and evaporators have been proposed and applied in ISE to enable highly controllable and efficient solar-to-thermal energy conversion. With rational design, solar evaporators can achieve excellent energy management for lowering energy loss, harvesting extra energy, and efficiently utilizing energy in the system to improve freshwater production. Beyond that, a strategy of reducing water vaporization enthalpy by introducing molecular engineering for water-state regulation has also been demonstrated as an effective approach to boost ISE. Based on these, this article discusses the energy nexus in two-dimensional (2D) and three-dimensional (3D) evaporators separately and reviews the strategies for design and fabrication of highly efficient ISE systems. The summarized work offers significant perspectives for guiding the future design of ISE systems with efficient energy management, which pave pathways for practical applications.

Keywords: energy management, molecular engineering, photothermal materials, interfacial solar evaporation

References(238)

[1]

Salehi, M. Global water shortage and potable water safety; today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936.

[2]

Mishra, B. K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490.

[3]

Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15.

[4]

Wu, J. Y. Challenges for safe and healthy drinking water in China. Curr. Environ. Health Rep. 2020, 7, 292–302.

[5]

McDonald, R. I.; Green, P.; Balk, D.; Fekete, B. M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317.

[6]

Kummu, M.; Ward, P. J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 034006.

[7]

Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670.

[8]

Darre, N. C.; Toor, G. S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111.

[9]

Nassrullah, H.; Anis, S. F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569.

[10]

Gebreeyessus, G. D. Status of hybrid membrane-ion-exchange systems for desalination: A comprehensive review. Appl. Water Sci. 2019, 9, 135.

[11]

Adham, S.; Hussain, A.; Matar, J. M.; Dores, R.; Janson, A. Application of membrane distillation for desalting brines from thermal desalination plants. Desalination 2013, 314, 101–108.

[12]

Shaulsky, E.; Wang, Z. X.; Deshmukh, A.; Karanikola, V.; Elimelech, M. Membrane distillation assisted by heat pump for improved desalination energy efficiency. Desalination 2020, 496, 114694.

[13]

Goosen, M. F. A.; Sablani, S. S.; Al-Hinai, H.; Al-Obeidani, S.; Al-Belushi, R.; Jackson, D. Fouling of reverse osmosis and ultrafiltration membranes: A critical review. Sep. Sci. Technol. 2005, 39, 2261–2297.

[14]

Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H. A.; Curcio, E. Photothermal membrane distillation for seawater desalination. Adv. Mater. 2017, 29, 1603504.

[15]

Wang, Z. X.; Horseman, T.; Straub, A. P.; Yip, N. Y.; Li, D. Y.; Elimelech, M.; Lin, S. H. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763.

[16]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

[17]

Gao, M. M.; Peh, C. K.; Meng, F. L.; Ho, G. W. Photothermal membrane distillation toward solar water production. Small Methods 2021, 5, 2001200.

[18]

He, F.; Wu, X. C.; Gao, J.; Wang, Z. X. Solar-driven interfacial evaporation toward clean water production: Burgeoning materials, concepts and technologies. J. Mater. Chem. A 2021, 9, 27121–27139.

[19]

Wu, X.; Chen, G. Y.; Owens, G.; Chu, D. W.; Xu, H. L. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy 2019, 12, 277–296.

[20]

Cao, S. S.; Rathi, P.; Wu, X. H.; Ghim, D.; Jun, Y. S.; Singamaneni, S. Cellulose nanomaterials in interfacial evaporators for desalination: A “natural” choice. Adv. Mater. 2021, 33, 2000922.

[21]

Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

[22]

Poletti, A.; Fracasso, G.; Conti, G.; Pilot, R.; Amendola, V. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications. Nanoscale 2015, 7, 13702–13714.

[23]

Cheng, P. F.; Wang, D.; Schaaf, P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: From fundamentals to applications. Adv. Sustain. Syst. 2022, 6, 2200115.

[24]

Huang, X.; Liu, J. Z.; Zhou, P.; Su, G. H.; Zhou, T.; Zhang, X. X.; Zhang, C. H. Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting. Small 2022, 18, 2104048.

[25]

Chen, W.; Miao, H.; Meng, G. Q.; Huang, K. L.; Kong, L. Q.; Lin, Z. F.; Wang, X. D.; Li, X. B.; Li, J. H.; Liu, X. Y. et al. Polydopamine-induced multilevel engineering of regenerated silk fibroin fiber for photothermal conversion. Small 2022, 18, 2107196.

[26]

Shridharan, T. S.; Kang, M. J.; Sivanantham, A.; Kim, S.; Cho, I. S. Layered bismuth copper oxychalcogenides as advanced photothermal materials for efficient interfacial solar desalination. Desalination 2022, 540, 115984.

[27]

Xiao, P.; Yang, W. Q.; Qiu, N. X.; Li, S.; Ni, F.; Zhang, C.; Gu, J. C.; Kuo, S. W.; Chen, T. Engineering biomimetic nanostructured “melanosome” textiles for advanced solar-to-thermal devices. Nano Lett. 2022, 22, 9343–9350.

[28]

Cao, S. J.; Thomas, A.; Li, C. X. Emerging materials for interfacial solar-driven water purification. Angew. Chem., Int. Ed. 2023, 62, e202214391.

[29]

Hao, S. Y.; Han, H. C.; Yang, Z. Y.; Chen, M. T.; Jiang, Y. Y.; Lu, G. X.; Dong, L.; Wen, H. L.; Li, H.; Liu, J. R. et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 2022, 14, 178.

[30]

Huang, Z. M.; Liu, Y.; Li, S. L.; Lee, C. S.; Zhang, X. H. From materials to devices: Rationally designing solar steam system for advanced applications. Small Methods 2022, 6, 2200835.

[31]

Zang, L. L.; Finnerty, C.; Zheng, S. X.; Conway, K.; Sun, L. G.; Ma, J.; Mi, B. X. Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Res. 2021, 198, 117135.

[32]

Li, J. Y.; Jing, Y. J.; Zhou, X.; Mao, J. L.; Chen, Y. J.; Sun, H. X.; Deng, X. F.; Gao, C. Z. Multifunctional photothermal materials based on natural pumices for high efficiency solar-driven interface evaporator. Int. J. Energy Res. 2021, 45, 20132–20142.

[33]

Ibrahim, I.; Bhoopal, V.; Seo, D. H.; Afsari, M.; Shon, H. K.; Tijing, L. D. Biomass-based photothermal materials for interfacial solar steam generation: A review. Mater. Today Energy 2021, 21, 100716.

[34]

Xie, Z. J.; Duo, Y. H.; Lin, Z. T.; Fan, T. J.; Xing, C. Y.; Yu, L.; Wang, R. H.; Qiu, M.; Zhang, Y. P.; Zhao, Y. H. et al. The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. 2020, 7, 1902236.

[35]

Lin, Y. W.; Xu, H.; Shan, X. L.; Di, Y. S.; Zhao, A. Q.; Hu, Y. J.; Gan, Z. X. Solar steam generation based on the photothermal effect: From designs to applications, and beyond. J. Mater. Chem. A 2019, 7, 19203–19227.

[36]

Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

[37]

Wang, Z. X.; Gao, J.; Zhou, J. J.; Gong, J. W.; Shang, L. W.; Ye, H. B.; He, F.; Peng, S. Q.; Lin, Z. X.; Li, Y. X. et al. Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 2023, 35, 2209015.

[38]

Kiriarachchi, H. D.; Awad, F. S.; Hassan, A. A.; Bobb, J. A.; Lin, A.; El-Shall, M. S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale 2018, 10, 18531–18539.

[39]

Zhang, L. L.; Xing, J.; Wen, X. L.; Chai, J. W.; Wang, S. J.; Xiong, Q. H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 2017, 9, 12843–12849.

[40]

Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 2014, 10, 3234–3239.

[41]

Wu, T.; Li, H. X.; Xie, M. H.; Shen, S.; Wang, W. X.; Zhao, M.; Mo, X. M.; Xia, Y. N. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Mater. Today Energy 2019, 12, 129–135.

[42]

Zhang, M.; Xu, W. H.; Li, M. F.; Li, J. Q.; Wang, P.; Wang, Z. K. In situ reduction of silver nanoparticles on chitosan hybrid copper phosphate nanoflowers for highly efficient plasmonic solar-driven interfacial water evaporation. J. Bionic. Eng. 2021, 18, 30–39.

[43]

Yang, Y. W.; Que, W. X.; Zhao, J. Q.; Han, Y.; Ju, M. M.; Yin, X. T. Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chem. Eng. J. 2019, 373, 955–962.

[44]

Li, N.; Yin, D. D.; Xu, L. L.; Zhao, H. Y.; Liu, Z. Q.; Du, Y. P. High-quality ultralong copper sulphide nanowires for promising applications in high efficiency solar water evaporation. Mater. Chem. Front. 2019, 3, 394–398.

[45]

Shao, B.; Wang, Y. D.; Wu, X.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Stackable nickel-cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 11665–11673.

[46]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[47]

Zakaria, H.; Li, Y.; Fathy, M. M.; Zhou, X. Y.; Xiong, X. Y.; Wang, Y.; Rong, S. X.; Zhang, C. A novel TiO(2−x)/TiN@ACB composite for synchronous photocatalytic Cr(VI) reduction and water photothermal evaporation under visible/infrared light illumination. Chemosphere 2022, 311, 137137.

[48]

Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

[49]

Yang, M. Q.; Tan, C. F.; Lu, W. H.; Zeng, K. Y.; Ho, G. W. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv. Funct. Mater. 2020, 30, 2004460.

[50]

Zhu, S. H.; Lei, Z. W.; Dou, Y. J.; Lou, C. W.; Lin, J. H.; Li, J. W. Sputter-deposited nickel nanoparticles on Kevlar fabrics with laser-induced graphene for efficient solar evaporation. Chem. Eng. J. 2023, 452, 139403.

[51]

Zheng, P.; Tang, J. L.; Zhou, Z. P.; Gong, L.; Yang, H. F.; Jia, X.; Li, X. D.; Liu, Y. S.; Tan, L. H. Ultrafast synthesis of defective black TiO2 via one-step NaN3 deflagration for high-efficiency solar water evaporation. Surf. Interfaces 2021, 22, 100901.

[52]

Wei, N.; Li, Z. K.; Li, Q.; Yang, E. Q.; Xu, R. Q.; Song, X. J.; Sun, J. Q.; Dou, C.; Tian, J.; Cui, H. Z. Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation. J. Colloid Interface Sci. 2021, 588, 369–377.

[53]

Wang, Y. Z.; Zhao, L.; Zhang, F.; Yu, K.; Yang, C. Y.; Jia, J. J.; Guo, W.; Zhao, J. X.; Qu, F. Y. Synthesis of a Co-Sn alloy-deposited PTFE film for enhanced solar-driven water evaporation via a super-absorbent polymer-based “water pump” design. ACS Appl. Mater. Interfaces 2021, 13, 26879–26890.

[54]

Wang, L. F.; Yang, G. L.; Jiang, L.; Ma, Y. X.; Liu, D.; Razal, J.; Lei, W. W. Improved photo-excited carriers transportation of WS2-O-doped-graphene heterostructures for solar steam generation. Small 2022, 2204898.

[55]

Si, P. C.; Wang, Q. H.; Kong, H. R.; Li, Y. T.; Wang, Y. Gradient titanium oxide nanowire film: A multifunctional solar energy utilization platform for high-salinity organic sewage treatment. ACS Appl. Mater. Interfaces 2022, 14, 19652–19658.

[56]

Qiu, X. P.; Kong, H. R.; Li, Y. T.; Wang, Q. H.; Wang, Y. Interface engineering of a Ti4O7 nanofibrous membrane for efficient solar-driven evaporation. ACS Appl. Mater. Interfaces 2022, 14, 54855–54866.

[57]

Miao, X.; Zhao, L.; Ren, G. N.; Pang, Y. L.; Xin, H.; Ge, B.; Liu, C. C. Design of an interface heating device based on polydivinylbenzene/SiO2/Bi2WO6 and its visible light response performance for water purification. Phys. Chem. Chem. Phys. 2023, 25, 4332–4339.

[58]
Liu, W. N. ; Li, P. F. ; Li, X. Q. ; He, Y. Q. ; An, L. ; Qu, D. ; Wang, X. Y. ; Sun, Z. C. Self-cleaning solar water evaporation device based on polyaniline/TiO2/natural cellulose fibers for contaminant water. Sci. China Mater., in press, https://doi.org/10.1007/s40843-022-2282-9.
DOI
[59]

Li, W.; Li, X. F.; Liu, J.; Zeng, M. J.; Feng, X. Y.; Jia, X. Q.; Yu, Z. Z. Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 22845–22854.

[60]

Li, D.; Chen, S. S.; Huang, R. R.; Xue, C. R.; Li, P. F.; Li, Y. S.; Chang, Q.; Wang, H. Q.; Li, N.; Jia, S. P. et al. Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation. Ceram. Int. 2021, 47, 19800–19808.

[61]

Han, S.; Yang, J.; Li, X. F.; Li, W.; Zhang, X. T.; Koratkar, N.; Yu, Z. Z. Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238.

[62]

Du, R. R.; Zhu, H. Y.; Zhao, H. Y.; Lu, H.; Dong, C.; Liu, M. T.; Yang, F.; Yang, J.; Wang, J.; Pan, J. M. Coupling ultrafine plasmonic Co3O4 with thin-layer carbon over SiO2 nanosphere for dual-functional PMS activation and solar interfacial water evaporation. J. Alloys Compd. 2023, 940, 168816.

[63]

Ai, L. H.; Xu, Y.; Qin, S.; Luo, Y.; Wei, W.; Wang, X. Z.; Jiang, J. Facile fabrication of Ni5P4-NiMoOx nanorod arrays with synergistic thermal management for efficient interfacial solar steam generation and water purification. J. Colloid Interface Sci. 2023, 634, 22–31.

[64]

Ahmad Wani, T.; Garg, P.; Bera, S.; Bhattacharya, S.; Dutta, S.; Kumar, H.; Bera, A. Narrow-bandgap LaMO3 (M = Ni, Co) nanomaterials for efficient interfacial solar steam generation. J. Colloid Interface Sci. 2022, 612, 203–212.

[65]

Zhang, L.; Liu, G.; Wu, L. P.; Chen, Z. H.; Dai, Z. Y.; Yu, F.; Wang, X. B. Integrated light adsorption and thermal insulation of Zn doping 1T phase MoS2-based evaporation prototype for continuous freshwater generation. Chem. Eng. J. 2023, 454, 140298.

[66]

Yang, E. Q.; Wei, N.; Li, M. H.; Xu, R. Q.; Sui, Y. L.; Kong, M. Y.; Ran, X. C.; Cui, H. Z. Three-dimensional artificial transpiration structure based on 1T/2H-MoS2/activated carbon fiber cloth for solar steam generation. ACS Appl. Mater. Interfaces 2022, 14, 29788–29796.

[67]

Wu, J.; Qu, J.; Yin, G.; Zhang, T. T.; Zhao, H. Y.; Jiao, F. Z.; Liu, J.; Li, X. F.; Yu, Z. Z. Omnidirectionally irradiated three-dimensional molybdenum disulfide decorated hydrothermal pinecone evaporator for solar-thermal evaporation and photocatalytic degradation of wastewaters. J. Colloid Interface Sci. 2023, 637, 477–488.

[68]

Liu, P.; Hu, Y. B.; Li, X. Y.; Xu, L.; Chen, C.; Yuan, B. L.; Fu, M. L. Enhanced solar evaporation using a scalable MoS2-based hydrogel for highly efficient solar desalination. Angew. Chem., Int. Ed. 2022, 61, e202208587.

[69]

Lin, Z. X.; Wu, T. T.; Feng, Y. F.; Shi, J.; Zhou, B.; Zhu, C. H.; Wang, Y. Y.; Liang, R. L.; Mizuno, M. Poly(N-phenylglycine)/MoS2 nanohybrid with synergistic solar-thermal conversion for efficient water purification and thermoelectric power generation. ACS Appl. Mater. Interfaces 2022, 14, 1034–1044.

[70]

Li, M.; Liu, B. W.; Guo, H. M.; Wang, H. T.; Shi, Q. Y.; Xu, M. W.; Yang, M. Q.; Luo, X. B.; Wang, L. D. Reclaimable MoS2 sponge absorbent for drinking water purification driven by solar energy. Environ. Sci. Technol. 2022, 56, 11718–11728.

[71]

Guo, M. Y.; Yuan, B. H.; Sui, Y.; Xiao, Y.; Dong, J.; Yang, L. X.; Bai, L. J.; Yang, H. W.; Wei, D. L.; Wang, W. X. et al. Rational design of molybdenum sulfide/tungsten oxide solar absorber with enhanced photocatalytic degradation toward dye wastewater purification. J. Colloid Interface Sci. 2023, 631, 33–43.

[72]

Chen, R.; Wang, X.; Gan, Q. M.; Zhang, T. Q.; Zhu, K. H.; Ye, M. M. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection. J. Mater. Chem. A 2019, 7, 11177–11185.

[73]

Wu, D. D.; Qu, D.; Jiang, W. S.; Chen, G.; An, L.; Zhuang, C. Q.; Sun, Z. C. Self-floating nanostructured Ni-NiOx/Ni foam for solar thermal water evaporation. J. Mater. Chem. A 2019, 7, 8485–8490.

[74]

Xu, Y.; Ma, J. X.; Han, Y.; Zhang, J. J.; Cui, F. Y.; Zhao, Y.; Li, X.; Wang, W. Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification. ACS Sustain. Chem. Eng. 2019, 7, 5476–5485.

[75]

Cao, H. X. ; Jiao, S. K. ; Zhang, S. ; Xu, J. G. ; Wang, H. Y. ; Guo, C. L. In situ synthesizing C-CuO composite for efficient photo-thermal conversion and its application in solar-driven interfacial evaporation. Int. J. Energy Res. 2021, 45, 7829–7839.

[76]

Wu, X.; Xu, J.; Chen, G. Y.; Fan, R.; Liu, X. K.; Xu, H. L. Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh. Green Energy Environ. 2017, 2, 387–392.

[77]

Cao, H. X.; Zhang, S.; Jiang, T.; Wang, D.; Zhu, Y. Y.; Bian, Z. T. Preparing photo-thermal conversion membrane with CuS-multi walled carbon nanotube (MWCNT) composite for solar-driven interfacial evaporation. Mater. Lett. 2022, 317, 132145.

[78]

Zhang, D.; Cai, Y. X.; Liang, Q. Q.; Wu, Z. T.; Sheng, N.; Zhang, M. H.; Wang, B. X.; Chen, S. Y. Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation. ACS Sustain. Chem. Eng. 2020, 8, 9017–9026.

[79]

Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

[80]

Liu, H. X.; Yang, C. Y.; Guo, W.; Zhang, F.; Lin, H. M.; Zhao, L.; Ma, T. Y.; Lu, X. X.; Qu, F. Y. CoWO4−x-based photothermal membranes for solar-driven water evaporation and eutrophic lake water purification. ACS Omega 2020, 5, 31598–31607.

[81]

Zhang, X. Y.; Ren, L. P.; Xu, J.; Shang, B.; Liu, X.; Xu, W. L. Magnetically driven tunable 3D structured Fe3O4 vertical array for high-performance solar steam generation. Small 2022, 18, 2105198.

[82]

He, J. X.; Liu, F.; Xiao, C. H.; Sun, H. X.; Li, J. Y.; Zhu, Z. Q.; Liang, W. D.; Li, A. Fe3O4/PPy-coated superhydrophilic polymer porous foam: A double layered photothermal material with a synergistic light-to-thermal conversion effect toward desalination. Langmuir 2021, 37, 12397–12408.

[83]

Zhang, B. P.; Gu, Q. F.; Wang, C.; Gao, Q. L.; Guo, J. X.; Wong, P. W.; Liu, C. T.; An, A. K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770.

[84]

Wang, Z. G.; Yu, K.; Gong, S. J.; Mao, H. B.; Huang, R.; Zhu, Z. Q. Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 2021, 13, 16246–16258.

[85]

Pu, L.; Ma, H. J.; Dong, J. C.; Zhang, C.; Lai, F. L.; He, G. J.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Xylem-inspired polyimide/MXene aerogels with radial lamellar architectures for highly sensitive strain detection and efficient solar steam generation. Nano Lett. 2022, 22, 4560–4568.

[86]

Mu, X. T.; Chen, L. H.; Qu, N. N.; Yu, J. L.; Jiang, X. Q.; Xiao, C. H.; Luo, X. P.; Hasi, Q. MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation. J. Colloid Interface Sci. 2023, 636, 291–304.

[87]

Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376.

[88]

Li, W.; Tian, X. H.; Li, X. F.; Liu, J.; Li, C. J.; Feng, X. Y.; Shu, C.; Yu, Z. Z. An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J. Colloid Interface Sci. 2022, 606, 748–757.

[89]

Chen, L. H.; Mu, X. T.; Guo, Y. P.; Lu, H. J.; Yang, Y. M.; Xiao, C. H.; Hasi, Q. MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation. J. Colloid Interface Sci. 2022, 626, 35–46.

[90]

Aizudin, M.; Krishna Sudha, M.; Goei, R.; Kuang Lua, S.; Poolamuri Pottammel, R.; Iing Yoong Tok, A.; Huixiang Ang, E. Sustainable production of molybdenum carbide (MXene) from fruit wastes for improved solar evaporation. Chem. -Eur. J. 2023, 29, e202203184.

[91]

Yu, F.; Ming, X.; Xu, Y.; Chen, Z. H.; Meng, D. X.; Cheng, H. Y.; Shi, Z. X.; Shen, P.; Wang, X. B. Quasimetallic molybdenum carbide-based flexible polyvinyl alcohol hydrogels for enhancing solar water evaporation. Adv. Mater. Interfaces 2019, 6, 1901168.

[92]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Wang, X. Q.; Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

[93]

Zhou, J. G.; Sun, Z. L.; Chen, M. Q.; Wang, J. T.; Qiao, W. M.; Long, D. H.; Ling, L. C. Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties. Adv. Funct. Mater. 2016, 26, 5368–5375.

[94]

Zhang, Z.; Feng, Z.; Qi, H.; Chen, Y. L.; Chen, Y. J.; Deng, Q. L.; Wang, S. Carbonized sorghum straw derived 3D cup-shaped evaporator with enhanced evaporation rate and energy efficiency. Sustain. Mater. Technol. 2022, 32, e00414.

[95]

Zhang, Y. D.; Deng, W. F.; Wu, M. Y.; Liu, Z. X.; Yu, G.; Cui, Q.; Liu, C.; Fatehi, P.; Li, B. Robust, scalable, and cost-effective surface carbonized pulp foam for highly efficient solar steam generation. ACS Appl. Mater. Interfaces 2023, 15, 7414–7426.

[96]

Zhang, W. M.; Yan, J.; Su, Q.; Han, J.; Gao, J. F. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance. J. Colloid Interface Sci. 2022, 612, 66–75.

[97]

Yang, H. F.; Yang, G. C.; Qiao, Z. Q.; Bao, H. B.; Zhang, S. T.; Li, X. M.; Liu, Y. S. Facile deflagration synthesis of hollow carbon nanospheres with efficient performance for solar water evaporation. ACS Appl. Mater. Interfaces 2020, 12, 35193–35200.

[98]

Xiao, C. H.; Wang, S. S.; Guo, Y. P.; Zhang, Y. H.; Hasi, Q. M.; Tian, Q.; Chen, L. H. Coffee grounds-doped alginate porous materials for efficient solar steam generation. Langmuir 2022, 38, 1888–1896.

[99]

Tian, C.; Liu, J.; Ruan, R. F.; Tian, X. L.; Lai, X. Y.; Xing, L.; Su, Y. Q.; Huang, W.; Cao, Y.; Tu, J. C. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 2020, 16, 2000573.

[100]

Sun, P.; Zhang, W.; Zada, I.; Zhang, Y. X.; Gu, J. J.; Liu, Q. L.; Su, H. L.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 2171–2179.

[101]

Ma, N.; Fu, Q.; Hong, Y. X.; Hao, X. Y.; Wang, X. G.; Ju, J.; Sun, J. L. Processing natural wood into an efficient and durable solar steam generation device. ACS Appl. Mater. Interfaces 2020, 12, 18165–18173.

[102]

Liu, F. Q. X.; Xia, L. M.; Zhang, L. Y.; Guo, F.; Zhang, X. X.; Yu, Y.; Yang, R. L. Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation. ACS Appl. Mater. Interfaces 2021, 13, 55299–55306.

[103]

Guan, W. X.; Guo, Y. H.; Yu, G. H. Carbon materials for solar water evaporation and desalination. Small 2021, 17, 2007176.

[104]

Fang, Q. L.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 2019, 11, 10672–10679.

[105]

Liu, Y. M.; Chen, J. W.; Guo, D. W.; Cao, M. Y.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interfaces 2015, 7, 13645–13652.

[106]

Wang, H. Q.; Lu, Z. C.; Ma, S. Y.; Li, Z. H.; Xin, Z. H.; Zhang, Z. H.; Zhou, B.; Shen, J.; Qin, L. L.; Du, A. Ultrablack poly(vinyl alcohol)-graphite composite xerogel with vertically arranged pores for highly efficient solar steam generation and desalination. Adv. Energy Sustain. Res. 2022, 3, 2100188.

[107]

Yin, Z.; Wang, H. M.; Jian, M. Q.; Li, Y. S.; Xia, K. L.; Zhang, M. C.; Wang, C. Y.; Wang, Q.; Ma, M.; Zheng, Q. S. et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 28596–28603.

[108]

Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain. Chem. Eng. 2016, 4, 1223–1230.

[109]

Su, L. F.; Liu, X. Y.; Li, X.; Yang, B.; Wu, B.; Xia, R.; Qian, J. S.; Zhou, J. H.; Miao, L. Facile synthesis of vertically arranged CNTs for efficient solar-driven interfacial water evaporation. ACS Omega 2022, 7, 47349–47356.

[110]

Ma, X.; Fang, W. Z.; Guo, Y.; Li, Z. Y.; Chen, D. K.; Ying, W.; Xu, Z.; Gao, C.; Peng, X. S. Hierarchical porous SWCNT stringed carbon polyhedrons and PSS threaded MOF bilayer membrane for efficient solar vapor generation. Small 2019, 15, 1900354.

[111]

Liu, H. C.; Huang, G. C.; Wang, R.; Huang, L.; Wang, H. Z.; Hu, Y. Z.; Cong, G. T.; Bao, F.; Xu, M.; Zhu, C. Z. et al. Carbon nanotubes grown on the carbon fibers to enhance the photothermal conversion toward solar-driven applications. ACS Appl. Mater. Interfaces 2022, 14, 32404–32411.

[112]

Hu, N. N.; Zhao, S. L.; Chen, T. C.; Lu, X. N.; Zhang, J. L. Janus carbon nanotube@poly(butylene adipate-co-terephthalate) fabric for stable and efficient solar-driven interfacial evaporation. ACS Appl. Mater. Interfaces 2022, 14, 46010–46022.

[113]

Zhao, X.; Meng, X. T.; Zou, H. Q.; Wang, Z. H.; Du, Y. D.; Shao, Y.; Qi, J.; Qiu, J. S. Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 2023, 33, 2209207.

[114]

Wang, X. Q.; Ou, G.; Wang, N.; Wu, H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 2016, 8, 9194–9199.

[115]

Finnerty, C. T. K.; Menon, A. K.; Conway, K. M.; Lee, D.; Nelson, M.; Urban, J. J.; Sedlak, D.; Mi, B. X. Interfacial solar evaporation by a 3D graphene oxide stalk for highly concentrated brine treatment. Environ. Sci. Technol. 2021, 55, 15435–15445.

[116]

Yu, M. Y.; Li, C. J.; Li, W.; Min, P. Reduced graphene oxide decorated cellulose acetate filter evaporators for highly efficient water evaporation and purification driven by solar energy and environmental energy. Adv. Sustain. Syst. 2022, 6, 2200023.

[117]

Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B: Environ. 2022, 301, 120820.

[118]

Li, Z. J.; Chen, D. K.; Gao, H.; Xie, H. Q.; Yu, W. Reduced graphene oxide composite nanowood for solar-driven interfacial evaporation and electricity generation. Appl. Therm. Eng. 2023, 223, 119985.

[119]
Li, C. J. ; Li, W. ; Zhao, H. Y. ; Feng, X. Y. ; Li, X. F. ; Yu, Z. Z. Constructing central hollow cylindrical reduced graphene oxide foams with vertically and radially orientated porous channels for highly efficient solar-driven water evaporation and purification. Nano Res., in press, https://doi.org/10.1007/s12274-022-5348-5.
DOI
[120]

Guo, A. K.; Ming, X.; Fu, Y.; Wang, G.; Wang, X. B. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation. ACS Appl. Mater. Interfaces 2017, 9, 29958–29964.

[121]

Zou, Y.; Zhao, J. Y.; Zhu, J. Y.; Guo, X. Y.; Chen, P.; Duan, G. G.; Liu, X. H.; Li, Y. W. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624.

[122]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

[123]

Zhang, Y.; Yin, X. Y.; Yu, B.; Wang, X. L.; Guo, Q. Q.; Yang, J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption. ACS Appl. Mater. Interfaces 2019, 11, 32559–32568.

[124]

Xu, Y.; Tang, C. Y.; Ma, J. X.; Liu, D. Q.; Qi, D. P.; You, S. J.; Cui, F. Y.; Wei, Y.; Wang, W. Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 2020, 54, 5150–5158.

[125]

Wilson, H. M.; Lim, H. W.; Lee, S. J. Highly efficient and salt-rejecting poly(vinyl alcohol) hydrogels with excellent mechanical strength for solar desalination. ACS Appl. Mater. Interfaces 2022, 14, 47800–47809.

[126]

Sun, S. J.; Wang, Y. M.; Sun, B. B.; Zhang, F. F.; Xu, Q.; Mi, H. Y.; Li, H.; Tao, X. M.; Guo, Z. H.; Liu, C. T. et al. Versatile Janus composite nonwoven solar absorbers with salt resistance for efficient wastewater purification and desalination. ACS Appl. Mater. Interfaces 2021, 13, 24945–24956.

[127]

Shi, Y.; Meng, N.; Wang, Y.; Cheng, Z. H.; Zhang, W. Y.; Liao, Y. Z. Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation. ACS Appl. Mater. Interfaces 2022, 14, 4522–4531.

[128]

Qiao, L. F.; Li, N.; Luo, L.; He, J. T.; Lin, Y. X.; Li, J. J.; Yu, L. M.; Guo, C.; Murto, P.; Xu, X. F. Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J. Mater. Chem. A 2021, 9, 9692–9705.

[129]

Qi, D. P.; Liu, Y.; Liu, Y. B.; Liu, Z. Y.; Luo, Y. F.; Xu, H. B.; Zhou, X.; Zhang, J. J.; Yang, H.; Wang, W. et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 2020, 32, 2004401.

[130]

Liu, Z. W.; Qing, R. K.; Xie, A. Q.; Liu, H.; Zhu, L. L.; Chen, S. Self-contained janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation. ACS Appl. Mater. Interfaces 2021, 13, 18829–18837.

[131]

Liang, Y. Z.; Bai, Y. T.; Xie, A. Q.; Mao, J.; Zhu, L. L.; Chen, S. Solar-initiated frontal polymerization of photothermic hydrogels with high swelling properties for efficient water evaporation. Sol. RRL 2021, 6, 2100917.

[132]

Chen, Q. M.; Pei, Z. Q.; Xu, Y. S.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 2018, 9, 623–628.

[133]

Guo, Y. H.; Zhao, X.; Zhao, F.; Jiao, Z. H.; Zhou, X. Y.; Yu, G. H. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energ Environ. Sci. 2020, 13, 2087–2095.

[134]

Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

[135]

Luo, Y. N.; Fu, B. W.; Shen, Q. C.; Hao, W.; Xu, J. L.; Min, M. D.; Liu, Y. M.; An, S.; Song, C. Y.; Tao, P. et al. Patterned surfaces for solar-driven interfacial evaporation. ACS Appl. Mater. Interfaces 2019, 11, 7584–7590.

[136]

Xu, Y.; Ma, J. X.; Liu, D. Q.; Xu, H. B.; Cui, F. Y.; Wang, W. Origami system for efficient solar driven distillation in emergency water supply. Chem. Eng. J. 2019, 356, 869–876.

[137]

Liu, H. J.; Liu, Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon 2021, 177, 199–206.

[138]

Hong, S.; Shi, Y.; Li, R. Y.; Zhang, C. L.; Jin, Y.; Wang, P. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 2018, 10, 28517–28524.

[139]

Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

[140]

Cui, T. T.; Liu, Z.; Gao, L. L.; He, Y. S.; Jin, B. W.; Meng, X.; Qi, Y. P.; Ye, C. H. Engineered wood with hierarchically tunable microchannels toward efficient solar vapor generation. Langmuir 2022, 38, 12773–12784.

[141]

Lu, J. L.; Ngo, C. V.; Singh, S. C.; Yang, J. J.; Xin, W.; Yu, Z.; Guo, C. L. Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting. Langmuir 2019, 35, 3562–3567.

[142]

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

[143]

Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, 1807716.

[144]

Gao, X.; Ren, H. Y.; Zhou, J. Y.; Du, R.; Yin, C.; Liu, R.; Peng, H. L.; Tong, L. M.; Liu, Z. F.; Zhang, J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 2017, 29, 5777–5781.

[145]

Yao, H. Z.; Zhang, P. P.; Yang, C.; Liao, Q. H.; Hao, X. Z.; Huang, Y. X.; Zhang, M.; Wang, X. B.; Lin, T. Y.; Cheng, H. H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energ Environ. Sci. 2021, 14, 5330–5338.

[146]

Liao, Q. H.; Zhang, P. P.; Yao, H. Z.; Cheng, H. H.; Li, C.; Qu, L. T. Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 2020, 7, 1903125.

[147]

Zhou, L.; Zhuang, S. D.; He, C. Y.; Tan, Y. L.; Wang, Z. L.; Zhu, J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 2017, 32, 195–200.

[148]

Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

[149]

Ding, D. W.; Wu, H.; He, X. P.; Yang, F.; Gao, C. B.; Yin, Y. D.; Ding, S. J. A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. J. Mater. Chem. A 2021, 9, 11241–11247.

[150]

Wang, F. Y.; Xu, N.; Zhao, W.; Zhou, L.; Zhu, P. C.; Wang, X. Y.; Zhu, B.; Zhu, J. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 2021, 5, 1602–1612.

[151]

Gao, T.; Wang, Y. D.; Wu, X.; Wu, P.; Yang, X. F.; Li, Q.; Zhang, Z. Z.; Zhang, D. K.; Owens, G.; Xu, H. L. More from less: Improving solar steam generation by selectively removing a portion of evaporation surface. Sci. Bull. 2022, 67, 1572–1580.

[152]

Zhang, Z.; Mu, P.; He, J. X.; Zhu, Z. Q.; Sun, H. X.; Wei, H. J.; Liang, W. D.; Li, A. Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation. ChemSusChem 2019, 12, 426–433.

[153]

Zhang, X. C.; Wang, X. N.; Wu, W. D.; Chen, X. D.; Wu, Z. X. Self-floating monodisperse microparticles with a nano-engineered surface composition and structure for highly efficient solar-driven water evaporation. J. Mater. Chem. A 2019, 7, 6963–6971.

[154]

Zeng, Y.; Yao, J. F.; Horri, B. A.; Wang, K.; Wu, Y. Z.; Li, D.; Wang, H. T. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energ Environ. Sci. 2011, 4, 4074–4078.

[155]

Wang, C. J.; Wang, Y.; Yan, M. Y.; Zhang, W. X.; Wang, P.; Guan, W.; Zhang, S.; Yu, L. Y.; Feng, J. G.; Gan, Z. X. et al. Highly efficient self-floating jellyfish-like solar steam generators based on the partially carbonized enteromorpha aerogel. J. Colloid Interface Sci. 2023, 630, 297–305.

[156]

Li, H. R.; He, Y. R.; Hu, Y. W.; Wang, X. Z. Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS Appl. Mater. Interfaces 2018, 10, 9362–9368.

[157]

Jin, M. T.; Wu, Z. T.; Guan, F. Y.; Zhang, D.; Wang, B. X.; Sheng, N.; Qu, X. Y.; Deng, L. L.; Chen, S. Y.; Chen, Y. et al. Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator. ACS Appl. Mater. Interfaces 2022, 14, 12284–12294.

[158]

Chen, Y. X.; Shi, Y. M.; Kou, H.; Liu, D. L.; Huang, Y.; Chen, Z. G.; Zhang, B. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation. ACS Sustain. Chem. Eng. 2019, 7, 2911–2915.

[159]

Ge, B.; Han, B. B.; Lv, J.; Zhao, L. M.; Yin, Y. B.; Ren, G. N.; Zhang, Z. Z. Design of self-floating photothermal conversion devices with solar steam generation capability. Adv. Mater. Interfaces 2022, 9, 2101357.

[160]

Wang, C. J.; Wang, Y.; Guan, W.; Wang, P.; Feng, J. G.; Song, N.; Dong, H. Z.; Yu, L. Y.; Sui, L. N.; Gan, Z. X. et al. A self-floating and integrated bionic mushroom for highly efficient solar steam generation. J. Colloid Interface Sci. 2022, 612, 88–96.

[161]

Chen, J. X.; Li, B.; Hu, G. X.; Aleisa, R.; Lei, S.; Yang, F.; Liu, D. L.; Lyu, F. L.; Wang, M. Z.; Ge, X. W. et al. Integrated evaporator for efficient solar-driven interfacial steam generation. Nano Lett. 2020, 20, 6051–6058.

[162]

Chen, G. Y.; Sun, J. M.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y. J.; Gu, X. G.; Shuai, Z. G.; Tang, B. Z. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation. Adv. Mater. 2020, 32, 1908537.

[163]

Zhang, F. Y.; Li, Y. G.; Bai, X. H.; Wang, S. F.; Liang, B. L.; Fu, G. S.; Wu, Z. S. Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation. J. Mater. Chem. A 2018, 6, 23263–23269.

[164]

Liu, H. J.; Alam, K.; He, M. T.; Liu, Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 49860–49867.

[165]

Li, H. X.; Wen, H. F.; Li, J.; Huang, J. C.; Wang, D.; Tang, B. Z. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 26033–26040.

[166]

Jiang, F.; Liu, H.; Li, Y. J.; Kuang, Y. D.; Xu, X.; Chen, C. J.; Huang, H.; Jia, C.; Zhao, X. P.; Hitz, E. et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 2018, 10, 1104–1112.

[167]

Tian, S.; Huang, Z. M.; Tan, J. H.; Cui, X.; Xiao, Y. F.; Wan, Y. P.; Li, X. Z.; Zhao, Q.; Li, S. L.; Lee, C. S. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification. ACS Energy Lett. 2020, 5, 2698–2705.

[168]

Chang, C.; Tao, P.; Fu, B. W.; Xu, J. L.; Song, C. Y.; Wu, J. B.; Shang, W.; Deng, T. Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux. ACS Omega 2019, 4, 3546–3555.

[169]

Peng, F. J.; Xu, J.; Bai, X. L.; Feng, G. P.; Zeng, X. H.; Ibn Raihan, R.; Bao, H. F. A Janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation. Sol. Energy Mater. Sol. Cells 2021, 221, 110910.

[170]

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

[171]

Wang, Y. D.; Wu, X.; Wu, P.; Yu, H. M.; Zhao, J. Y.; Yang, X. F.; Li, Q.; Zhang, Z. Z.; Zhang, D. K.; Owens, G. et al. Salt isolation from waste brine enabled by interfacial solar evaporation with zero liquid discharge. J. Mater. Chem. A 2022, 10, 14470–14478.

[172]

Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400–407.

[173]

Zhang, Z. Y.; Liu, H. Y.; Kong, Z.; Fang, M. W.; Wang, M. L.; Zhu, Y. Mushroom-like graphene nanosheets/copper sulfide nanowires foam with Janus-type wettability for solar steam generation. ACS Appl. Nano Mater. 2022, 5, 4931–4937.

[174]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[175]

Menon, A. K.; Haechler, I.; Kaur, S.; Lubner, S.; Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 2020, 3, 144–151.

[176]

Ma, X. L.; Jia, X. D.; Yao, G. C.; Wen, D. S. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater. Cell Rep. Phys. Sci. 2022, 3, 100940.

[177]

Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. X.; Li, J. L.; Zhu, S. N.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77.

[178]

Xia, Y.; Hou, Q. F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H. Y.; Woo, M. W.; Zhang, L.; Gao, L. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847.

[179]

Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

[180]

Zhao, H. Y.; Huang, J.; Zhou, J.; Chen, L. F.; Wang, C. M.; Bai, Y. X.; Zhou, J.; Deng, Y.; Dong, W. X.; Li, Y. S. et al. Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 2022, 16, 3554–3562.

[181]

Yuan, B. H.; Zhang, C. F.; Liang, Y.; Yang, L. X.; Yang, H. W.; Bai, L. J.; Wei, D. L.; Wang, W. X.; Wang, Q. Y.; Chen, H. A low-cost 3D spherical evaporator with unique surface topology and inner structure for solar water evaporation-assisted dye wastewater treatment. Adv. Sustain. Syst. 2021, 5, 2000245.

[182]

Yu, Z.; Cheng, S. A.; Li, C. C.; Li, L. X.; Yang, J. W. Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl. Mater. Interfaces 2019, 11, 32038–32045.

[183]

Yang, K. J.; Pan, T. T.; Dang, S. C.; Gan, Q. Q.; Han, Y. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat. Commun. 2022, 13, 6653.

[184]

Wang, Y. C.; Sun, X. Y.; Tao, S. Y. Rational 3D coiled morphology for efficient solar-driven desalination. Environ. Sci. Technol. 2020, 54, 16240–16248.

[185]

Tu, C.; Cai, W. F.; Chen, X.; Ouyang, X. L.; Zhang, H.; Zhang, Z. A 3D-structured sustainable solar-driven steam generator using super-black nylon flocking materials. Small 2019, 15, 1902070.

[186]

Ni, F.; Xiao, P.; Zhang, C.; Liang, Y.; Gu, J. C.; Zhang, L.; Chen, T. Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers. ACS Appl. Mater. Interfaces 2019, 11, 15498–15506.

[187]

Liu, H.; Ye, H. G.; Gao, M. M.; Li, Q.; Liu, Z. W.; Xie, A. Q.; Zhu, L. L.; Ho, G. W.; Chen, S. Conformal microfluidic-blow-spun 3D photothermal catalytic spherical evaporator for omnidirectional enhanced solar steam generation and CO2 reduction. Adv. Sci. 2021, 8, 2101232.

[188]

Liang, Y. Z.; Guo, J. C.; Li, J. J.; Mao, J.; Xie, A. Q.; Zhu, L. L.; Chen, S. Robust and flexible 3D photothermal evaporator with heat storage for high-performance solar-driven evaporation. Adv. Sustain. Syst. 2022, 6, 2200236.

[189]

Chen, G. L.; Zhang, N.; Li, N.; Yu, L. M.; Xu, X. F. A 3D hemispheric steam generator based on an organic-inorganic composite light absorber for efficient solar evaporation and desalination. Adv. Mater. Interfaces 2020, 7, 1901715.

[190]

Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022, 212, 118099.

[191]

Wu, L.; Dong, Z. C.; Cai, Z. R.; Ganapathy, T.; Fang, N. X.; Li, C. X.; Yu, C. L.; Zhang, Y.; Song, Y. L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 2020, 11, 521.

[192]

Gao, T.; Wu, X.; Wang, Y. D.; Owens, G.; Xu, H. L. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Sol. RRL 2021, 5, 2100053.

[193]

Xu, Z. C.; Ran, X. Q.; Wang, D.; Zhong, M. F.; Zhang, Z. J. High efficient 3D solar interfacial evaporator: Achieved by the synergy of simple material and structure. Desalination 2022, 525, 115495.

[194]

Gao, T.; Wu, X.; Owens, G.; Xu, H. L. A cobalt oxide@polydopamine-reduced graphene oxide-based 3D photothermal evaporator for highly efficient solar steam generation. Tungsten 2020, 2, 423–432.

[195]

Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. A biomimetic interfacial solar evaporator for heavy metal soil remediation. Chem. Eng. J. 2022, 435, 134793.

[196]

Shao, B.; Wu, X.; Wang, Y. D.; Gao, T.; Liu, Z. Q.; Owens, G.; Xu, H. L. A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 24703–24709.

[197]

Khajevand, M.; Azizian, S.; Jaleh, B. A bio-based 3D evaporator nanocomposite for highly efficient solar desalination. Sep. Purif. Technol. 2022, 284, 120278.

[198]

Shi, Y.; Zhang, C. L.; Li, R. Y.; Zhuo, S. F.; Jin, Y.; Shi, L.; Hong, S.; Chang, J.; Ong, C.; Wang, P. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 2018, 52, 11822–11830.

[199]

Li, R. Y.; Wu, M. C.; Aleid, S.; Zhang, C. L.; Wang, W. B.; Wang, P. An integrated solar-driven system produces electricity with fresh water and crops in arid regions. Cell Rep. Phys. Sci. 2022, 3, 100781.

[200]

Zhang, C. L.; Shi, Y.; Shi, L.; Li, H. X.; Li, R. Y.; Hong, S.; Zhuo, S. F.; Zhang, T. J.; Wang, P. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 2021, 12, 998.

[201]

Bian, Y.; Shen, Y.; Tang, K.; Du, Q. Q.; Hao, L. C.; Liu, D. Y.; Hao, J. G.; Zhou, D.; Wang, X. K.; Zhang, H. L. et al. Carbonized tree-like furry magnolia fruit-based evaporator replicating the feat of plant transpiration. Glob. Chall. 2019, 3, 1900040.

[202]

Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

[203]

Wu, X.; Gao, T.; Han, C. H.; Xu, J. S.; Owens, G.; Xu, H. L. A photothermal reservoir for highly efficient solar steam generation without bulk water. Sci. Bull. 2019, 64, 1625–1633.

[204]

Song, H. M.; Liu, Y. H.; Liu, Z. J.; Singer, M. H.; Li, C. Y.; Cheney, A. R.; Ji, D. X.; Zhou, L.; Zhang, N.; Zeng, X. et al. Cold vapor generation beyond the input solar energy limit. Adv. Sci. 2018, 5, 1800222.

[205]

Wang, Y. D.; Wu, X.; Yang, X. F.; Owens, G.; Xu, H. L. Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy 2020, 78, 105269.

[206]

Chen, J. X.; Lee, M.; Qiu, Y. H.; Wu, C. L. M.; Li, B.; Yin, Y. D. Emulsion-templated synthesis of 3D evaporators for efficient solar steam generation. SmartMat 2023, 4, e1140.

[207]

Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

[208]

Li, J. L.; Wang, X. Y.; Lin, Z. H.; Xu, N.; Li, X. Q.; Liang, J.; Zhao, W.; Lin, R. X.; Zhu, B.; Liu, G. L. et al. Over 10 kg·m−2·h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 2020, 4, 928–937.

[209]

Wang, H. Q.; Zhang, C.; Ji, X. J.; Yang, J. M.; Zhang, Z. H.; Ma, Y.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Over 11 kg·m−2·h−1 evaporation rate achieved by cooling metal-organic framework foam with pine needle-like hierarchical structures to subambient temperature. ACS Appl. Mater. Interfaces 2022, 14, 10257–10266.

[210]

Wang, Y. D.; Wu, X.; Gao, T.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation. Nano Energy 2021, 79, 105477.

[211]

Chen, Y. Q.; Wang, Y. D.; Xu, J.; Ibn Raihan, R.; Guo, B.; Yang, G.; Li, M. Y.; Bao, H. F.; Xu, H. L. A 3D opened hollow photothermal evaporator for highly efficient solar steam generation. Sol. RRL 2022, 6, 2200202.

[212]

Yin, K.; Wu, Z. P.; Wu, J. R.; Zhu, Z.; Zhang, F.; Duan, J. A. Solar-driven thermal-wind synergistic effect on laser-textured superhydrophilic copper foam architectures for ultrahigh efficient vapor generation. Appl. Phys. Lett. 2021, 118, 211905.

[213]

Wang, Y. D.; Wu, X.; Shao, B.; Yang, X. F.; Owens, G.; Xu, H. L. Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 2020, 65, 1380–1388.

[214]

Xu, N.; Zhu, P. C.; Sheng, Y.; Zhou, L.; Li, X. Q.; Tan, H. R.; Zhu, S. N.; Zhu, J. Synergistic tandem solar electricity-water generators. Joule 2020, 4, 347–358.

[215]

Zhou, X. Y.; Zhao, F.; Zhang, P. P.; Yu, G. H. Solar water evaporation toward water purification and beyond. ACS Mater. Lett. 2021, 3, 1112–1129.

[216]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253.

[217]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

[218]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[219]

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

[220]

Zhang, P. P.; Zhao, F.; Shi, W.; Lu, H. Y.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv. Mater. 2022, 34, 2110548.

[221]

Guo, Y. H.; Zhou, X. Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. H. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019, 13, 7913–7919.

[222]

Guo, Y. H.; Lu, H. Y.; Zhao, F.; Zhou, X. Y.; Shi, W.; Yu, G. H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

[223]

Guo, Y. H.; de Vasconcelos, L. S.; Manohar, N.; Geng, J. F.; Johnston, K. P.; Yu, G. H. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem., Int. Ed. 2022, 61, e202114074.

[224]

Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.

[225]

Zou, H. Q.; Meng, X. T.; Zhao, X.; Qiu, J. S. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 2023, 35, 2207262.

[226]

Yin, X. Y.; Zhang, Y.; Guo, Q. Q.; Cai, X. B.; Xiao, J. F.; Ding, Z. F.; Yang, J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998–11007.

[227]

Liang, X. C.; Zhang, X. J.; Huang, Q. C.; Zhang, H.; Liu, C. K.; Liu, Y. Z. Simple preparation of external-shape and internal-channel size adjustable porous hydrogels by fermentation for efficient solar interfacial evaporation. Sol. Energy 2020, 208, 778–786.

[228]

Gui, Z. Y.; Xiang, D. P. Hierarchically designed evaporators with dual-layered hydrogel/aerogel structure for efficient solar water evaporation. Sep. Purif. Technol. 2023, 310, 123237.

[229]

Chen, X. X.; Wu, Z. Y.; Lai, D. G.; Zheng, M.; Xu, L.; Huo, J. B.; Chen, Z. X.; Yuan, B. L.; Fu, M. L. Resilient biomass-derived hydrogel with tailored topography for highly efficient and long-term solar evaporation of high-salinity brine. J. Mater. Chem. A 2020, 8, 22645–22656.

[230]

Guo, Y. H.; Yu, G. H. Engineering hydrogels for efficient solar desalination and water purification. Acc. Mater. Res. 2021, 2, 374–384.

[231]

Guo, Y. H.; Fang, Z. W.; Yu, G. H. Multifunctional hydrogels for sustainable energy and environment. Polym. Int. 2021, 70, 1425–1432.

[232]

Lei, C. X.; Guo, Y. H.; Guan, W. X.; Yu, G. H. Polymeric materials for solar water purification. J. Polym. Sci. 2021, 59, 3084–3099.

[233]

Guan, Q. F.; Han, Z. M.; Ling, Z. C.; Yang, H. B.; Yu, S. H. Sustainable wood-based hierarchical solar steam generator: A biomimetic design with reduced vaporization enthalpy of water. Nano Lett. 2020, 20, 5699–5704.

[234]

Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. MOF-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, 1808249.

[235]

Yan, X. L.; Lyu, S. Z.; Xu, X. Q.; Chen, W. B.; Shang, P. N.; Yang, Z. F.; Zhang, G.; Chen, W. H.; Wang, Y. P.; Chen, L. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation. Angew. Chem., Int. Ed. 2022, 61, e202201900.

[236]

Li, C. X.; Cao, S. J.; Lutzki, J.; Yang, J.; Konegger, T.; Kleitz, F.; Thomas, A. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J. Am. Chem. Soc. 2022, 144, 3083–3090.

[237]

Zhu, F. B.; Wang, L. Q.; Demir, B.; An, M.; Wu, Z. L.; Yin, J.; Xiao, R.; Zheng, Q.; Qian, J. Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 2020, 7, 3187–3195.

[238]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 January 2023
Revised: 12 February 2023
Accepted: 23 February 2023
Published: 28 March 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

Authors acknowledge the support of the National Natural Science Foundation of China (Nos. 52125201 and 21975141), the National Key Basic Research and Development Program (No. 2020YFA0210702), Shenzhen Science and Technology Research Project (No. JCYJ20180508152903208), and Australian Research Council (Nos. FT190100485 and DP220100583).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return