Recent seismicity on the Kerguelen islands

Kerguelen seismicity

Authors

  • Olivier Lengliné Université de Strasbourg/CNRS, Institut Terre et Environnement de Strasbourg, UMR7063, 67084 Strasbourg Cedex, France https://orcid.org/0000-0003-0678-2587
  • Joachim Rimpôt Université de Strasbourg/CNRS, Institut Terre et Environnement de Strasbourg, UMR7063, 67084 Strasbourg Cedex, France https://orcid.org/0009-0001-1306-2185
  • Alessia Maggi Université de Strasbourg/CNRS, Institut Terre et Environnement de Strasbourg, UMR7063, 67084 Strasbourg Cedex, France https://orcid.org/0000-0001-8859-8948
  • Dimitri Zigone Université de Strasbourg/CNRS, Institut Terre et Environnement de Strasbourg, UMR7063, 67084 Strasbourg Cedex, France https://orcid.org/0000-0003-2383-8271

DOI:

https://doi.org/10.26443/seismica.v2i2.285

Keywords:

Hotspot, Seismicity, Volcanic Structure

Abstract

The Kerguelen archipelago, one of the largest oceanic archipelagos in the world, was built by an active hotspot interacting with a ridge between 110 and 40 million years ago; since then, the ridge has migrated over 1000~km away and the archipelago's volcanic activity has been steadily decreasing. Despite the lack of recent active tectonics and the quiescent volcanism of the Kerguelen archipelago, there have been several observations of seismic events of unknown origin in its vicinity. The only seismic instrument within 1000~km of the archipelago was installed on Kerguelen's main island in the 1980's. In this study we apply modern earthquake detection techniques to the continuous waveforms recorded by this seismometer over the past 20 years. We reveal that the Kerguelen archipelago islands hosts an abundant seismicity. This seismicity exhibits swarm-like characteristics in several clusters while at other locations the earthquakes appear more steady over time. We locate most events near the largest icecap of the main island. We speculate that the origin of the earthquakes can be linked to residual volcanic, magmatic, or hydrothermal activity at depth, all of which can be favored by flexural stress caused by the documented fast retreat of icecap. This seismicity may also indicate that the Kerguelen hotspot shows signs of unrest.

References

Adams, R., & Zhang, B. (1984). A further earthquake on the Kerguelen Plateau. Geophysical Journal International, 79(2), 697–703. https://doi.org/10.1111/j.1365-246X.1984.tb02248.x DOI: https://doi.org/10.1111/j.1365-246X.1984.tb02248.x

Albino, F., Pinel, V., & Sigmundsson, F. (2010). Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grı́msvötn and Katla. Geophysical Journal International, 181(3), 1510–1524. https://doi.org/10.1111/j.1365-246X.2010.04603.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04603.x

Antonioli, A., Cocco, M., Das, S., & Henry, C. (2002). Dynamic stress triggering during the great 25 March 1998 Antarctic Plate earthquake. Bulletin of the Seismological Society of America, 92(3), 896–903. https://doi.org/10.1785/0120010164 DOI: https://doi.org/10.1785/0120010164

Ballestracci, R., & Nougier, J. (1984). Detection by infrared thermography and modelling of an icecapped geothermal system in Kerguelen archipelago. Journal of Volcanology and Geothermal Research, 20(1–2), 85–99. https://doi.org/10.1016/0377-0273(84)90067-2 DOI: https://doi.org/10.1016/0377-0273(84)90067-2

Bergman, E. A., Nábělek, J. L., & Solomon, S. C. (1984). An extensive region of off-ridge normal-faulting earthquakes in the southern Indian Ocean. Journal of Geophysical Research: Solid Earth, 89(B4), 2425–2443. https://doi.org/10.1029/JB089iB04p02425 DOI: https://doi.org/10.1029/JB089iB04p02425

Berthier, E., Le Bris, R., Mabileau, L., Testut, L., & Rémy, F. (2009). Ice wastage on the Kerguelen Islands (49 S, 69 E) between 1963 and 2006. Journal of Geophysical Research: Earth Surface, 114(F3). https://doi.org/10.1029/2008JF001192 DOI: https://doi.org/10.1029/2008JF001192

Charvis, P., Recq, M., Operto, S., & Brefort, D. (1995). Deep structure of the northern Kerguelen Plateau and hotspot-related activity. Geophysical Journal International, 122(3), 899–924. https://doi.org/10.1111/j.1365-246X.1995.tb06845.x DOI: https://doi.org/10.1111/j.1365-246X.1995.tb06845.x

Chen, X., Shearer, P., & Abercrombie, R. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008973 DOI: https://doi.org/10.1029/2011JB008973

Coffin, M. F., Pringle, M., Duncan, R., Gladczenko, T., Storey, M., Müller, R., & Gahagan, L. (2002). Kerguelen hotspot magma output since 130 Ma. Journal of Petrology, 43(7), 1121–1137. https://doi.org/10.1093/petrology/43.7.1121 DOI: https://doi.org/10.1093/petrology/43.7.1121

De Barros, L., Baques, M., Godano, M., Helmstetter, A., Deschamps, A., Larroque, C., & Courboulex, F. (2019). Fluid-induced swarms and coseismic stress transfer: A dual process highlighted in the aftershock sequence of the 7 April 2014 earthquake (Ml 4.8, Ubaye, France). Journal of Geophysical Research: Solid Earth, 124(4), 3918–3932. https://doi.org/10.1029/2018JB017226 DOI: https://doi.org/10.1029/2018JB017226

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04491.x

Duputel, Z., Lengliné, O., & Ferrazzini, V. (2019). Constraining spatiotemporal characteristics of magma migration at Piton de la Fournaise volcano from pre-eruptive seismicity. Geophysical Research Letters, 46(1), 119–127. https://doi.org/10.1029/2018GL080895 DOI: https://doi.org/10.1029/2018GL080895

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., & others. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96(34), 226–231.

Favier, V., Verfaillie, D., Berthier, E., Menegoz, M., Jomelli, V., Kay, J., Ducret, L., Malbéteau, Y., Brunstein, D., Gallée, H., & others. (2016). Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep32396 DOI: https://doi.org/10.1038/srep32396

Frenot, Y., Gloaguen, J., Picot, G., Bougère, J., & Benjamin, D. (1993). Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia, 95(1), 140–144. https://doi.org/10.1007/BF00649517 DOI: https://doi.org/10.1007/BF00649517

Gagnevin, D., Ethien, R., Bonin, B., Moine, B., Féraud, G., Gerbe, M.-C., Cottin, J.-Y., Michon, G., Tourpin, S., Mamias, G., & others. (2003). Open-system processes in the genesis of silica-oversaturated alkaline rocks of the Rallier-du-Baty Peninsula, Kerguelen Archipelago (Indian Ocean). Journal of Volcanology and Geothermal Research, 123(3–4), 267–300. https://doi.org/10.1016/S0377-0273(02)00509-7 DOI: https://doi.org/10.1016/S0377-0273(02)00509-7

Giret, A. (1990). Typology, evolution, and origin of the Kerguelen plutonic series, Indian Ocean: a review. Geological Journal, 25(3–4), 239–247. https://doi.org/10.1002/gj.3350250307 DOI: https://doi.org/10.1002/gj.3350250307

Gregoire, M., Jackson, I., O’Reilly, S., & Cottin, J. (2001). The lithospheric mantle beneath the Kerguelen Islands (Indian Ocean): petrological and petrophysical characteristics of mantle mafic rock types and correlation with seismic profiles. Contributions to Mineralogy and Petrology, 142(2), 244–259. https://doi.org/10.1007/s004100100289 Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). DOI: https://doi.org/10.1007/s004100100289

GEOSCOPE, French Global Network of broad band seismic stations. https://doi.org/10.18715/GEOSCOPE.G

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., & others. (2017). Pyrocko-An open-source seismology toolbox and library. https://doi.org/10.5880/GFZ.2.1.2017.001

Jiang, Q., Jourdan, F., Olierook, H. K. H., Merle, R. E., & Whittaker, J. M. (2020). Longest continuously erupting large igneous province driven by plume-ridge interaction. Geology, 49(2), 206–210. https://doi.org/10.1130/G47850.1 DOI: https://doi.org/10.1130/G47850.1

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Kumar, P., Yuan, X., Kumar, M. R., Kind, R., Li, X., & Chadha, R. (2007). The rapid drift of the Indian tectonic plate. Nature, 449(7164), 894–897. https://doi.org/10.1038/nature06214 DOI: https://doi.org/10.1038/nature06214

Lengliné, O., Rimpôt, J., Maggi, A., & Zigone, D. (2023). Catalog of Seismicity for the Kerguelen Islands (1999-2020). Zenodo. https://doi.org/10.5281/zenodo.8328841

Lough, A. C., Wiens, D. A., & Nyblade, A. (2018). Reactivation of ancient Antarctic rift zones by intraplate seismicity. Nature Geoscience, 11(7), 515–519. https://doi.org/10.1038/s41561-018-0140-6 DOI: https://doi.org/10.1038/s41561-018-0140-6

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w

Okal, E. A. (1981). Intraplate seismicity of Antarctica and tectonic implications. Earth and Planetary Science Letters, 52(2), 397–409. https://doi.org/10.1016/0012-821X(81)90192-8 DOI: https://doi.org/10.1016/0012-821X(81)90192-8

Okal, E. A. (1983). Oceanic intraplate seismicity. Annual Review of Earth and Planetary Sciences, 11(1), 195–214. https://doi.org/10.1146/annurev.ea.11.050183.001211 DOI: https://doi.org/10.1146/annurev.ea.11.050183.001211

Omori, F. (n.d.). The Journal of the College of Science, Imperial University, Japan, 2.

Reading, A. M. (2006). On seismic strain-release within the Antarctic Plate. In Antarctica (pp. 351–355). Springer. https://doi.org/10.1007/3-540-32934-X_43 DOI: https://doi.org/10.1007/3-540-32934-X_43

Reading, A. M. (2007). The seismicity of the Antarctic plate. In Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America. https://doi.org/10.1130/2007.2425(18) DOI: https://doi.org/10.1130/2007.2425(18)

Recq, M., Brefort, D., Malod, J., & Veinante, J.-L. (1990). The Kerguelen Isles (southern Indian Ocean): new results on deep structure from refraction profiles. Tectonophysics, 182(3–4), 227–248. https://doi.org/10.1016/0040-1951(90)90165-5 DOI: https://doi.org/10.1016/0040-1951(90)90165-5

Recq, M., Roy, I. L., Charvis, P., Goslin, J., & Brefort, D. (1994). Structure profonde du mont Ross d’après la réfraction sismique (ı̂les Kerguelen, océan Indien austral). Canadian Journal of Earth Sciences, 31(12), 1806–1821. https://doi.org/10.1139/e94-161 DOI: https://doi.org/10.1139/e94-161

Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 2–32. https://doi.org/10.1785/BSSA0250010001 DOI: https://doi.org/10.1785/BSSA0250010001

Roberts, R., Christoffersson, A., & Cassidy, F. (1989). Real-time event detection, phase identification and source location estimation using single station three-component seismic data. Geophysical Journal International, 97(3), 471–480. https://doi.org/10.1111/j.1365-246X.1989.tb00517.x DOI: https://doi.org/10.1111/j.1365-246X.1989.tb00517.x

Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H., & Sturkell, E. (2010). Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919), 2519–2534. https://doi.org/10.1098/rsta.2010.0042 DOI: https://doi.org/10.1098/rsta.2010.0042

Steffen, H., & Wu, P. (2011). Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. Journal of Geodynamics, 52(3–4), 169–204. https://doi.org/10.1016/j.jog.2011.03.002 DOI: https://doi.org/10.1016/j.jog.2011.03.002

Stein, S., Cloetingh, S., Sleep, N. H., & Wortel, R. (1989). Passive margin earthquakes, stresses and rheology. In Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound (pp. 231–259). Springer. https://doi.org/10.1007/978-94-009-2311-9_14 DOI: https://doi.org/10.1007/978-94-009-2311-9_14

Stephenson, J., Budd, G., Manning, J., & Hansbro, P. (2005). Major eruption-induced changes to the McDonald Islands, southern Indian Ocean. Antarctic Science, 17(2), 259–266. https://doi.org/10.1017/S095410200500266X DOI: https://doi.org/10.1017/S095410200500266X

Stewart, I. S., Sauber, J., & Rose, J. (2000). Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19(14), 1367–1389. https://doi.org/https://doi.org/10.1016/S0277-3791(00)00094-9 DOI: https://doi.org/10.1016/S0277-3791(00)00094-9

Utsu, T., Ogata, Y., & others. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1–33. https://doi.org/10.4294/jpe1952.43.1 DOI: https://doi.org/10.4294/jpe1952.43.1

Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1029/98EO00426 DOI: https://doi.org/10.1002/2013EO450001

Wiens, D. A., & Stein, S. (1984). Intraplate seismicity and stresses in young oceanic lithosphere. Journal of Geophysical Research: Solid Earth, 89(B13), 11442–11464. https://doi.org/10.1029/JB089iB13p11442 DOI: https://doi.org/10.1029/JB089iB13p11442

Zhang, Q., & Shearer, P. M. (2016). A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California. Geophysical Journal International, 205(2), 995–1005. https://doi.org/10.1093/gji/ggw073 DOI: https://doi.org/10.1093/gji/ggw073

Additional Files

Published

2023-10-27

How to Cite

Lengliné, O., Rimpôt, J., Maggi, A., & Zigone, D. (2023). Recent seismicity on the Kerguelen islands: Kerguelen seismicity. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.285

Issue

Section

Articles