Surface-Enhanced Infrared Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals

13 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.

Keywords

localized surface plasmon resonance
indium tin oxide
infrared
surface-enhanced infrared absorption
molecular vibration
transparent conducting oxide

Supplementary materials

Title
Description
Actions
Title
Supplementary Information: Surface-Enhanced Infrared Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals
Description
The supporting information includes simulation details for TCMT, COMSOL and MPM. It also includes extra data for ITO NCs and their monolayers.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.