Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Nr 1/16 (2022)

Artykuły

Problem ogólnych pojęć abstrakcyjnych w kontekście językoznawstwa kognitywnego

DOI: https://doi.org/10.25312/2391-5137.16/2022_01mf  [Google Scholar]
Opublikowane: 10.06.2022

Abstrakt

Obecnie panuje powszechne przekonanie, że założenia pierwszego kognitywizmu w językoznawstwie po- winny być całkowicie zastąpione przez paradygmat ucieleśnienia. Jednak choć panuje powszechna zgoda, że kwestia ugruntowania pojęć konkretnych jest dobrze wyjaśniona w ramach teorii ucieleśnionego języka (Lakoff, Johnson), pojawia się poważny problem w przypadku prób wyjaśnienia mechanizmu wyłaniania się pojęć abstrakcyjnych (ang. ungrounding problem, Dove). W niniejszym artykule staram się wykazać, że prawdziwym problemem, przed jakim stoją teorie ucieleśnienia, nie jest to, w jaki sposób myślenie abstrakcyjne jest ucieleśnione (Lakoff, Barsalou), lecz jak ucieleśnione poznanie może stać się abstrakcyjne. Jest to tak zwany ungrounding problem, który rozbija się na trzy pomniejsze kwestie: problem generalizacji, problem elastyczności oraz problem od-cieleśnienia. Jak twierdzę, dopiero przyjęcie stanowiska pośredniego pomiędzy teoriami ucieleśnienia a teoriami dystrybutywnymi pozwoli na sformułowanie satysfakcjonującego rozwiązania. Poniższy artykuł stanowi przybliżenie jednego z takich stanowisk pośrednich, jakim jest teoria ucieleśnionego i od-cieleśnionego poznania Guya Dove’a.

Bibliografia

  1. Adorni R., Proverbio A.M. (2012), The neural manifestation of the word concreteness effect: An electrical neuroimaging study, „Neuropsychologia”, Vol. 50. [Google Scholar]
  2. Andrews M., Frank S., Vigliocco G. (2014), Reconciling embodied and distributional accounts of meaning in language, „Topics in Cognitive Science”, Vol. 6. [Google Scholar]
  3. Andrews M., Vigliocco G., Vinson D.P. (2009), Integrating experiential and distributional data to learn semantic representations, „Psychological Review”, Vol. 116. [Google Scholar]
  4. Aziz-Zadeh L., Wilson S.M., Rizzolatti G., Iacoboni M. (2006), Congruent embodied representations for visually presented actions and linguistic phrases describing actions, „Current Biology”, Vol. 16. [Google Scholar]
  5. Bardolph M., Coulson S. (2014), How vertical hand movements impact brain activity elicited by literally and metaphorically related words: an ERP study of embodied metaphor, „Frontiers in Human Neuroscience”, Vol. 8. [Google Scholar]
  6. Barsalou L.W. (1993), Flexibility, structure, and linguistic vagary in concepts: Manifestations of a composition system of perceptual symbols, [w:] A.C. Collins, S.E. Gathercole, M.A. Conway (red.), Theories of memory, Londyn. [Google Scholar]
  7. Barsalou L.W. (1999), Perceptual symbol systems, „Behavioral and Brain Sciences”, Vol. 22. [Google Scholar]
  8. Barsalou L.W. (2003a), Abstraction in perceptual symbol systems, „Philosophical Transactions of the Royal Society of London: Biological Sciences”, Vol. 358. [Google Scholar]
  9. Barsalou L.W. (2003b), Situated simulation in human conceptual systems, „Language and Cognitive Processes”, Vol. 18. [Google Scholar]
  10. Barsalou L.W. (2012), The human conceptual system, [w:] M. Spivey, K. McRae, M. Joanisse (red.), The Cambridge handbook of psycholinguistics, Nowy Jork. [Google Scholar]
  11. Barsalou L.W., Wiemer-Hastings K. (2005), Situating abstract concepts, [w:] D. Percher, R.A. Zwaan (red.), Grounding cognition: The role of perception and action in memory, language and thinking, Cambridge. [Google Scholar]
  12. Binder J.R., Desai R.H., Graves W.W., Conant L.L. (2009), Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies, „Cerebral Cortex”, Vol. 19. [Google Scholar]
  13. Binder J.R., Westbury C., McKiernan K., Possing E., Medler D. (2005), Distinct brain systems for processing concrete and abstract concepts, „Journal of Cognitive Neuroscience”, Vol. 17. [Google Scholar]
  14. Borghi A.M., Binkofski F. (2014), Words as social tools: An embodied view on abstract concepts, Nowy York. [Google Scholar]
  15. Boulenger V., Shtyrov Y., Pulvermuller F. (2011), When do you grasp the idea? MEG evidence for instantaneous idiom understanding, „Neuroimage”, Vol. 59. [Google Scholar]
  16. Bowdle B.F., Gentner D. (2005), The career of metaphor, „Psychological Review”, Vol. 112. [Google Scholar]
  17. Bruni E., Tran G.B., Baroni M. (2011), Distributional semantics from texts and images, [w:] S. Pado, Y. Peirsman (red.), EMNLP 2011 Geometrical Models for Natural Language Semantics (GEMS 2011) Workshop, Stroudsburg. [Google Scholar]
  18. Chao L.L., Martin A. (2000), Representation of manipulable man-made objects in the dorsal stream, „Neuroimage”, Vol. 12. [Google Scholar]
  19. Chomsky N. (1982), Zagadnienia teorii składni, Wrocław. [Google Scholar]
  20. Clark A. (1998), Magic words: How language augments human computation, [w:] P. Carruthers, J. Boucher (red.), Language and thought: Interdisciplinary themes, Cambridge. [Google Scholar]
  21. Clark A. (2008), Supersizing the mind: Embodiment, action, and cognitive extension, Oxford. [Google Scholar]
  22. Clark A. (2009), Supersizing the mind: Embodiment, action, and cognitive extension, Oxford. [Google Scholar]
  23. Connell L., Lynott D. (2014), Principles of representation: Why you can’t represent the same concept twice, „Topics in Cognitive Science”, Vol. 6. [Google Scholar]
  24. Cooper L.A., Shepard R.N. (1973), Chronometric studies of the rotation of mental images, [w:] W.G. Chase (red.), Visual Information Processing: Proceedings, Nowy Jork. [Google Scholar]
  25. Damasio A. (2011), Jak umysł zyskał jaźń. Konstruowanie świadomego mózgu, Poznań. [Google Scholar]
  26. Damasio A.R., Damasio H. (1994), Cortical systems for retrieval of concrete knowledge: the convergence zone framework, [w:] C. Koch, J.L. Davis (red.), Large-Scale Neuronal Theories of the Brain. Computational neuroscience, Cambridge. [Google Scholar]
  27. Desai R.H., Binder J.R., Conant L.L., Mano Q.R., Seidenberg M.S. (2011), The neural career of sensory-motor metaphors, „Journal of Cognitive Neuroscience”, Vol. 23. [Google Scholar]
  28. Dove G. (2009), Beyond perceptual symbols: A call for representational pluralism, „Cognition”, Vol. 110. [Google Scholar]
  29. Dove G. (2011), On the need for embodied and dis-embodied cognition, „Frontiers in Psychology”, Vol. 1. [Google Scholar]
  30. Dove G. (2014), Thinking in words: Language as an embodied medium of thought, „Topics in Cognitive Science”, Vol. 6. [Google Scholar]
  31. Dove G. (2016), Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition, „Psychonomic Bulletin & Review”, Vol. 23. [Google Scholar]
  32. Dove G. (2018), Language as a disruptive technology: abstract concepts, embodiment and flexible mind, „Philosophical Transactions of the Royal Society B: Biological Sciences”, Vol. 373. [Google Scholar]
  33. Elman J.L. (2004), An alternative view of the mental lexicon, „Trends in Cognitive Science”, Vol. 8(7). [Google Scholar]
  34. Fernandino L., Conant L., Binder J.R., Blindauer K., Hiner B., Spangler K., Desai R.H. (2013), Where is the action? Action sentence processing in Parkinson’s disease, „Neuropsychologia”, Vol. 51. [Google Scholar]
  35. Fodor J. (1975), The language of thought, Londyn. [Google Scholar]
  36. Gallese V., Lakoff G. (2005), The brain’s concepts: The role of the sensory-motor system in reason and language, „Cognitive Neuropsychology”, Vol. 22. [Google Scholar]
  37. Gianelli C., Farnè A., Salemme R., Jeannerod M., Roy A.C. (2011), The agent is right: When motor embodied cognition is space-dependent, „PLOS ONE”, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025036 [dostęp: 25.04.2022]. [Google Scholar]
  38. Giesbrecht B., Gamblin C., Swaab T. (2004), Separable effects of semantic priming and imageability on word processing in human cortex, „Cerebral Cortex”, Vol. 14. [Google Scholar]
  39. Goldberg R.F., Perfetti C.A., Schneider W. (2006), Perceptual Knowledge retrieval activates sensory brain regions, „Journal of Science”, Vol. 26. [Google Scholar]
  40. Goodglass H., Hyde M.R., Blumstein S. (1969), Frequency, picturability and availability of nouns in aphasia, „Cortex”, Vol. 5. [Google Scholar]
  41. Harnad S. (1990), The symbol grounding, „Physica D: Nonlinear Phenomena”, Vol. 42(1–3). [Google Scholar]
  42. Hauk O., Johnsrude I., Pulvermuller F. (2004), Somatotopic representation of action words in human motor and premotor cortex, „Neuron”, Vol. 41. [Google Scholar]
  43. Hodges J., Bozeat S., Lambon Ralph M.A., Patterson K., Spatt J. (2000), The role of conceptual knowledge in object use evidence from semantic dementia, „Brain”, Vol. 123. [Google Scholar]
  44. Hodges J.R., Graham N., Patterson K. (1995), Charting the progression in semantic dementia: Implications for the organisation of semantic memory, „Memory”, Vol. 3. [Google Scholar]
  45. Hohol M. (2018), Od przestrzeni do abstrakcyjnych pojęć: W stronę poznania geometrycznego, [w:] R. Murawski, J. Woleński (red.), Problemy filozofii matematyki i informatyki, Poznań. [Google Scholar]
  46. Jefferies E., Lambon Ralph M.A. (2006), Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison, „Brain”, Vol. 129. [Google Scholar]
  47. Johnson M. (1987), The Body in the Mind. The Bodily Basis of Meaning, Imagination and Reason, Chicago. [Google Scholar]
  48. Katz R.B., Goodglass H. (1990), Deep dysphasia: Analysis of a rare form of repetition disorder, „Brain and Language”, Vol. 39. [Google Scholar]
  49. Kellenbach M.L., Brett M., Patterson K. (2001), Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge, „Cognitive, Affective, and Behavioral Neuroscience”, Vol. 1. [Google Scholar]
  50. Kiefer M., Sim E.-J., Herrnberger B., Grothe J., Hoenig K. (2008), The sound of concepts: Four markers for a link between auditory and conceptual brain systems, „Journal of Neuroscience”, Vol. 28. [Google Scholar]
  51. Kozhevnikov M. (2007), Cognitive styles in the context of modern psychology: Toward an integrated framework of cognitive style, „Psychological Bulletin”, Vol. 133(3). [Google Scholar]
  52. Laeng B., Zarrinpar A., Kosslyn S.M. (2003), Do separate processes identify objects as exemplars versus members of basic-level categories? Evidence from hemispheric specialization, „Brain and Cognition”, Vol. 53(1). [Google Scholar]
  53. Lakoff G. (1987), Women, fire, and dangerous things: What categories reveal about the mind, Chicago. [Google Scholar]
  54. Lakoff G., Johnson M. (1980), Metaphors we live by, Chicago. [Google Scholar]
  55. Lakoff G., Nunez R. (2000), Where mathematics comes from? How the embodied mind brings mathematics into being, Nowy Jork. [Google Scholar]
  56. Lambon Ralph M.A., McClelland J.L., Patterson K., Galton C.J., Hodges J.R. (2001), No right to speak? The relationship between object naming and semantic impairment: Neuropsychological evidence and a computational model, „Journal of Cognitive Neuroscience”, Vol. 13. [Google Scholar]
  57. Lambon Ralph M.A., Pobric G., Jefferies E. (2009), Conceptual knowledge is underpinned by the temporal lobe bilaterally: Convergent evidence from rTMS, „Cerebral Cortex”, Vol. 19. [Google Scholar]
  58. Lambon Ralph M.A., Sage K., Jones R.W., Mayberry E.J. (2010), Coherent concepts are computed in the anterior temporal lobes, „Proceedings of the National Academy of Sciences”, Vol. 107. [Google Scholar]
  59. Lebois L.A., Wilson-Mendenhall C.D., Barsalou L.W. (2014), Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects, „Cognitive Science”, Vol. 36(8). [Google Scholar]
  60. Louwerse M.M., Jeuniaux P. (2010), The linguistic and embodied nature of conceptual processing, „Cognition”, Vol. 114. [Google Scholar]
  61. Machery E. (2007), Concept Empiricism: A methodological critique, „Cognition”, Vol. 104. [Google Scholar]
  62. MacKay G., Shaw A. (2004), A comparative study of figurative language in children with autistic spectrum disorders, „Child Language Teaching & Therapy”, Vol. 20(1). [Google Scholar]
  63. Mahon B.Z. (2015), What is embodied about cognition, „Language, Cognition, and Neuroscience”, Vol. 30. [Google Scholar]
  64. Mahon B.Z., Caramazza A. (2008), A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content, „Journal of Physiology”, Vol. 102. [Google Scholar]
  65. Mellet E., Petit L., Mazoyer B. i wsp. (1998), Reopening the mental imagery debate: lessons from functional anatomy, „Neuroimage”, Vol. 2(34). [Google Scholar]
  66. Marques J.M. (2007), Specialization and semantic organization: Evidence form multiple-semantics linked to sensory modalities, „Memory & Cognition”, Vol. 34. [Google Scholar]
  67. Martin N., Saffran E.M. (1992), A computational account of deep dysphasia: Evidence from a single case study, „Brain and Language”, Vol. 43. [Google Scholar]
  68. McCaffrey J. (2015), Reconceiving conceptual vehicles: Lessons from semantic dementia, „Philosophical Psychology”, Vol. 28. [Google Scholar]
  69. McCaffrey J., Machery E. (2012), Philosophical issues about concepts, „Wiley Interdisciplinary Reviews: Cognitive Science”, Vol. 3. [Google Scholar]
  70. Merleau-Ponty M. (2017), Fenomenologia percepcji, Warszawa. [Google Scholar]
  71. Murphy G.L. (1996), On metaphoric representation, „Cognition”, Vol. 60. [Google Scholar]
  72. Murphy G.L. (1997), Reasons to doubt the present evidence for metaphoric representation, „Cognition”, Vol. 62. [Google Scholar]
  73. Noppeney U., Price C.J. (2004), Retrieval of abstract semantics, „NeuroImage”, Vol. 22. [Google Scholar]
  74. Paivio A. (1986), Mental representations: A dual coding approach, Nowy Jork. [Google Scholar]
  75. Papagno C., Fogliata A., Catricalà E., Miniussi C. (2009), The lexical processing of abstract and concrete nouns, „Brain Research”, Vol. 1263. [Google Scholar]
  76. Papeo L., Corradi-Dell’Acqua C., Rumiati R.I. (2011), „She” is not like „I”: The tie between language and action is in our imagination, „Journal of Cognitive Neuroscience”, Vol. 23. [Google Scholar]
  77. Patterson K., Graham N., Hodges J.R. (1994), The impact of semantic memory loss on phonological representations, „Journal of Cognitive Neuroscience”, Vol. 6. [Google Scholar]
  78. Patterson K., Nestor P.J., Rogers T.T. (2007), Where do you know what you know? The representation of semantic knowledge in the human brain, „Nature Reviews Neuroscience”, Vol. 8. [Google Scholar]
  79. Pecher D., Boot I., Van Dantzig S. (2011), Abstract concepts: Sensory-motor grounding, metaphors, and beyond, [w:] W.B. Ross (red.), The psychology of learning and motivation, Burlington. [Google Scholar]
  80. Pecher D., Zeelenberg R., Barsalou L.W. (2003), Verifying different-modality properties for concepts produces switching costs, „Psychological Science”, Vol. 14. [Google Scholar]
  81. Pobric G., Jefferies E., Lambon Ralph M.A. (2010), Amodal semantic representations depend on both left and right anterior temporal lobes: New rTMS evidence, „Neuropsychologia”, Vol. 48. [Google Scholar]
  82. Pulvermuller F. (2005), Brain mechanisms linking language and action, „Nature Reviews Neuroscience”, Vol. 6. [Google Scholar]
  83. Raposo A., Moss H.E., Stamatakis E.A., Tyler L.K. (2009), Modulation of motor and premotor cortices by actions, action words and action sentences, „Neuropsychologia”, Vol. 47. [Google Scholar]
  84. Rapp A.M., Leube D.T., Erb M., Grodd W., Kircher T.T. (2004), Neural correlates of metaphor processing, „Cognitive Brain Research”, Vol. 20. [Google Scholar]
  85. Reilly J., Harnish S., Garcia A., Hung J., Rodriguez A.D., Crosson B. (2014), Lesion symptom mapping in nonfluent aphasia: Can a brain be both embodied and disembodied?, „Cognitive Neuropsychology”, Vol. 31. [Google Scholar]
  86. Reilly J., Peelle J.E. (2008), Effects of semantic impairment on language processing in semantic dementia, „Seminars in Speech and Language”, Vol. 29. [Google Scholar]
  87. Riordan B., Jones M.N. (2011), Redundancy in perceptual and linguistic experience: comparing feature-based and distributional models of semantic representation, „Topics in Cognitive Science”, Vol. 3. [Google Scholar]
  88. Rosch E. (1978), Principles of categorization, [w:] E. Rosch, B.B. Lloyd (red.), Cognition and categorization, Nowy Jork. [Google Scholar]
  89. Sabsevitz D., Medler D., Seidenberg M., Binder J. (2005), Modulation of the semantic system by word imageability, „NeuroImage”, Vol. 27. [Google Scholar]
  90. Sakreida K., Scorolli C., Menz M.M., Heim S., Borghi A.M., Binkofski F. (2013), Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition, „Frontiers in Human Neuroscience”, Vol. 7(125). [Google Scholar]
  91. Santiago J., Ouellet M., Roman A., Valenzuela J. (2012), Attentional factors in conceptual congruency, „Cognitive Science”, Vol. 36. [Google Scholar]
  92. Saygin A.P., McCullough S., Alac M., Emmorey K. (2010), Modulation of BOLD response in motion-sensitive lateral temporal cortex by real and fictive motion sentences, „Journal of Cognitive Neuroscience”, Vol. 22. [Google Scholar]
  93. Searle J. (2002), Can Computers Think?, [w:] D.J. Chalmers (red.), Philosophy of Mind, Oxford. [Google Scholar]
  94. Shapiro L. (2011), Embodied cognition, Nowy Jork. [Google Scholar]
  95. Slepian M.L., Ambady N. (2014), Simulating sensorimotor metaphors: novel metaphors influence sensory judgments, „Cognition”, Vol. 130. [Google Scholar]
  96. Spelke E.S., Lee S.A., Izard V. (2010), Beyond core knowledge: Natural geometry, „Cognitive Science”, Vol. 34(5). [Google Scholar]
  97. Steyvers M. (2010), Combining feature norms and text data with topic models, „Acta Psychologica”, Vol. 133. [Google Scholar]
  98. Stringaris A., Medford N., Giampietro V., Brammer M., David A. (2007), Deriving meaning: distinct neural mechanisms for metaphoric, literal, and non-meaningful sentences, „Brain and Language”, Vol. 100. [Google Scholar]
  99. Tanaka J. (1999), Tracking the time course of object categorization using event-related potentials, „NeuroReport”, Vol. 10(4). [Google Scholar]
  100. Tettamanti M., Buccino G., Saccuman M.C. i in. (2005), Listening to action-related sentences activates fronto-parietal motor circuits, „Journal of Cognitive Neuroscience”, Vol. 17. [Google Scholar]
  101. Vermeulen N., Niedenthal P.M., Luminet O. (2007), Switching between sensory and affective systems incurs processing costs, „Cognitive Science”, Vol. 31. [Google Scholar]
  102. Vigliocco G., Kousta S.T., Della Rosa P.A., Vinson D.P., Tettamanti M., Devlin J.T., Cappa S.F. (2014), The neural representation of abstract words: The role of emotion, „Cerebral Cortex”, Vol. 24. [Google Scholar]
  103. Wang J., Conder J.A., Blitzer D.N., Shinkareva S.V. (2010), Neural representation of abstract and concrete concepts: A meta-analysis of imaging studies, „Human Brain Mapping”, Vol. 31. [Google Scholar]
  104. Willems R.M., Francken J.C. (2012), Embodied cognition: Taking the next step, „Frontiers in Psychology”, Vol. 3. [Google Scholar]
  105. Wilson M. (2002), Six view of embodied cognition, „Psychonomic Bulletin & Review”, Vol. 9. [Google Scholar]
  106. Wilson-Mendenhall C.D., Simmons W.K., Martin A., Barsalou L.W. (2013), Contextual processing of abstract concepts reveals neural representations of non-linguistic semantic content, „Journal of Cognitive Neuroscience”, Vol. 25. [Google Scholar]
  107. Wojcik E.H., Saffran J.R. (2013), The ontogeny of lexical networks: Toddlers encode the relationship among referents when learning novel words, „Psychological Science”, Vol. 24. [Google Scholar]
  108. Wygotski L.S. (1971), Wybrane prace psychologiczne, Warszawa. [Google Scholar]
  109. Yee E., Thompson-Schill S.L. (2016), Putting concepts into context, „Psychonomic Bulletin & Review”, Vol. 23. [Google Scholar]
  110. Yi H.-A., Moore P., Grossman M. (2007), Reversal of the concreteness effect for verbs in patients with semantic dementia, „Neuropsychology”, Vol. 21. [Google Scholar]

Downloads

Download data is not yet available.