Skip to content
Open Access Published by De Gruyter Open Access November 30, 2011

Application of the BEM approach for a determination of the regional marine geoid model and the mean dynamic topography in the Southwest Pacific Ocean and Tasman Sea

  • R. Tenzer , R. Čunderlík , N. Dayoub and A. Abdalla

Application of the BEM approach for a determination of the regional marine geoid model and the mean dynamic topography in the Southwest Pacific Ocean and Tasman Sea

We apply a novel approach for the gravimetric marine geoid modelling which utilise the boundary element method (BEM). The direct BEM formulation for the Laplace equation is applied to obtain a numerical solution to the linearised fixed gravimetric boundary-value problem in points at the Earth's surface. The numerical scheme uses the collocation method with linear basis functions. It involves a discretisation of the Earth's surface which is considered as a fixed boundary. The surface gravity disturbances represent the oblique derivative boundary condition. The BEM approach is applied to determine the marine geoid model over the study area of the Southwest Pacific Ocean and Tasman Sea using DNSC08 marine gravity data. The comparison of the BEM-derived and EGM2008 geoid models reveals that the geoid height differences vary within -25 and 18 cm with the standard deviation of 6 cm. The DNSC08 sea surface topography data and the new marine geoid are then used for modelling of the mean dynamic topography (MDT) over the study area. The local vertical datum (LVD) offsets estimated at 15 tide-gauge stations in New Zealand are finally used for testing the coastal MDT. The average value of differences between the MDT and LVD offsets is 1 cm.



References

Amos M. J., 2010, New Zealand Vertical Datum 2009. New Zealand Surveyor, 300: 5-16Search in Google Scholar

Andersen O. B., Knudsen P., 2009, DNSC08 Mean Sea Surface and Mean Dynamic Topography models. J. Geophys. Res., 114: C1100110.1029/2008JC005179Search in Google Scholar

Andersen O. B., Knudsen P., Berry P., 2009, The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod., 84: 191-19910.1007/s00190-009-0355-9Search in Google Scholar

Aoyama Y., Nakano J., 1999, RS/6000 SP: Practical MPI Programming. IBM, Poughkeepsie, New YorkSearch in Google Scholar

Becker J. J., Sandwell D. T., Smith W. H. F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S.-H., Ladner R., Marks K., Nelson S., Pharaoh A., Sharman G., Trimmer R., vonRosenburg J., Wallace G., Weatherall P., 2009, Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, revised for Marine Geodesy10.1080/01490410903297766Search in Google Scholar

Blinken R., Koch A. R., 2001, Geoid and sea surface topography derived from ERS-1 altimeter data the adjoint method. Stud. Geophys. Geod., 45: 235-25010.1023/A:1022080011849Search in Google Scholar

Brebbia C. A., Telles J. C. F., Wrobel L. C., 1984, Boundary Element Techniques, Theory and Applications in Engineering. Springer-Verlag, New York10.1007/978-3-642-48860-3Search in Google Scholar

Burša M., Radej K., Šíma Z., True S. A., Vatrt V., 1997, Determination of the geopotential scale factor from TOPEX/POSEIDON satellite altimetry. Studia Geophys. Geod., 41: 203-216Search in Google Scholar

Burša M., Kenyon S., Kouba J., Šíma Z., Vatrt V., Vítek V., Vojtíšková M., 2007, The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J. Geod., 81(2): 103-11010.1007/s00190-006-0091-3Search in Google Scholar

Castruccio F., Verron J., Gourdeau L., Brankart J. M., Brasseur P., 2008, Joint altimetric and in-situ data assimilation using the GRACE mean dynamic topography: a 1993-1998 hindcast experiment in the Tropical Pacific Ocean. Ocean Dynamics, 58: 43-6310.1007/s10236-007-0131-4Search in Google Scholar

Columbus J., Sirguey P., Tenzer R., 2011, A free, fully assessed 15-m DEM for New Zealand. Survey Quarterly, 66: 16-19Search in Google Scholar

Čunderlík R., Mikula K., 2009, Direct BEM for high-resolution global gravity field modelling. Studia Geoph. Geod., 54: 219-23810.1007/s11200-010-0011-0Search in Google Scholar

Čunderlík R., Mikula K., Mojzeš M., 2008, Numerical solution of the linearized fixed gravimetric boundary-value problem. J. Geod., 82: 15-2910.1007/s00190-007-0154-0Search in Google Scholar

Ekman M., Mäkinen J., 1996, Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J. Geophys. Res., 101(C5): 11993-1199910.1029/96JC00318Search in Google Scholar

Fenoglio L., Kusche J., Becker M., 2007, Estimation of mass variation and mean dynamic topography in the Mediterranean Sea from altimetry and GRACE/GOCE GEOID. European Space Agency (Special Publication) ESA SP, SP-627, Pp. 57-61Search in Google Scholar

Foreman M. G. G., Crawford W. R., Cherniawsky J. Y., Galbraith J., 2008, Dynamic ocean topography for the northeast Pacific and its continental margins. Geophys. Res. Lett., 35: L2260610.1029/2008GL035152Search in Google Scholar

Forsberg R., Skourup H., Andersen O., Laxon S., Ridout A., Braun A., Johannessen J., Siegismund F., Tscherning C. C., Knudsen P., 2007, Combination of spaceborne, airborne and surface gravity in support of arctic ocean sea-ice and MDT mapping. European Space Agency (Special Publication) ESA SP, SP-627, Pp. 21-26Search in Google Scholar

Glenn S. M., Porter D. L., Robinson A. R., 1991, A synthetic geoid validation of Geosat mesoscale dynamic topography in the Gulf Stream region. J. Geophys. Res., 96: 7145-716610.1029/91JC00078Search in Google Scholar

Gourdeau L., Lemoine J. M., Rio M. H., Hernandez F., 2003, Estimating mean dynamic topography in the Pacific Ocean from gravity and altimetry satellites. Geophys. Res. Lett., 30: 1-510.1029/2003GL018200Search in Google Scholar

Grafarend E. W., 1989, The geoid and the gravimetric boundary-value problem. Report 18, Dept. Geod., The Royal Institute of Technology, StockholmSearch in Google Scholar

Heiskanen W. A., Moritz H., 1967, Physical Geodesy. WH Freeman and Co, New York, London and San Francisco10.1007/BF02525647Search in Google Scholar

Hernandez F., Schaeffer P., Rio M. H., Tamagnan D., LeTraon G. P. Y., 2001, Mean Dynamic Topography for satellite altimetry: two approaches, from oceanographic data or satellite gravimetry. Journees luxembourgeoises de geodynamique. Session 89, Munsbach, Luxembourg, Pp. 19-25Search in Google Scholar

IAG SC3 Report, 1995, Travaux de L'Association Internationale de Géodésie, Tome 30, ParisSearch in Google Scholar

Ichikawa K., Imawaki S., Ishii H., 1995, Comparison of surface velocities determined from altimeter and drifting buoy data. J. Oceanogr., 51: 729-74010.1007/BF02235462Search in Google Scholar

Karimi R., Ardalan A. A., 2010, An alternative direct method towards mean dynamic topography computations. Ocean Dynamics, 60(3): 555-56210.1007/s10236-010-0275-5Search in Google Scholar

Koch K. R., Pope A. J., 1972, Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull. Géod., 46: 467-47610.1007/BF02522053Search in Google Scholar

Levitus S., 1982, Climatological atlas of the world ocean. NOAA Professional Paper 13, Rockville, MD: U. S. Dept. of CommerceSearch in Google Scholar

Levitus S., Boyer T. P., 1994, World Ocean Atlas 1994, Volume 4: Temperature NOAA Atlas NESDIS 4, National Ocean and Atmosphere Administration USASearch in Google Scholar

Levitus S., Burgett R., Boyer T. P., 1994, World Ocean Atlas 1994, Volume 3: Salinity NOAA Atlas NESDIS 3, National Ocean and Atmosphere Administration USASearch in Google Scholar

Maximenko N., Niiler P., Rio M. H., Melnichenko O., Centurioni L., Chambers D., Zlotnicki V., Galperin B., 2009, Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques journal. J. Atmos. Ocean. Tech., 26 (9): 1910-191910.1175/2009JTECHO672.1Search in Google Scholar

Mayer-Gürr T., 2007, ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn. Presentation at: Joint. Int. GSTM and DFG SPP Symp. 15-17 October, 2007, PotsdamSearch in Google Scholar

Moritz H., 1980, Advanced Physical Geodesy. Abacus Press, Tunbridge WellsSearch in Google Scholar

Orsi A. H., Whitworth T., Nowling W. D., 1995, On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research, Series I, 42: 641-67310.1016/0967-0637(95)00021-WSearch in Google Scholar

Qiu B., Kelly K. A., Joyce T. M., 1991, Mean flow and variability of the Kuroshio extension from Geosat altimetry data. J. Geophys. Res., 96: 18491-1850710.1029/91JC01834Search in Google Scholar

Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K., 2008, An Earth Gravitational Model to Degree 2160: EGM2008, presented at the 2008 General Assembly of EGU, Vienna, Austria, April 13-18, 200810.1190/1.3063757Search in Google Scholar

Rio M. H., Hernandez F., 2004, A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys. Res., 109: C1203210.1029/2003JC002226Search in Google Scholar

Rio M. H., Schaeffer P., Hernandez F., Lemoine J. M., 2005, The estimation of the ocean Mean Dynamic Topography through the combination of altimetric data, in-situ measurements and GRACE geoid: from global to regional studies. Proceedings of the GOCINA International Workshop, LuxembourgSearch in Google Scholar

Rio M. H., Schaeffer P., Lemoine J. M., Larnicol G., Hernandez F., 2007, Use of oceanographic in-situ measurements and altimetry to assess the accuracy of present (GRACE) and future (GOCE) geoid models. Impact for the estimation of the ocean mean dynamic topography. European Space Agency (Special Publication) ESA SP, SP-627, Pp. 57-61Search in Google Scholar

Schatz A. H., Thomée V., Wendland W. L., 1990, Mathematical Theory of Finite and Boundary Element Methods. Birkhäuser Verlag, Basel, Boston and Berlin10.1007/978-3-0348-7630-8Search in Google Scholar

Semtner A. J., Chervin R. M., 1992, Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97: 5493-555010.1029/92JC00095Search in Google Scholar

Stammer D., Tokmakian R. T., Semtner A., Wunsch C., 1996, How well does a 1/4 ° global circulation model simulate the large-scale oceanic observations? J. Geophys. Res., 101: 25779-2588110.1029/96JC01754Search in Google Scholar

Stewart R. H., 2007, Introduction to Physical Oceanography. College Station, Texas A&M University, OCLC 169907785Search in Google Scholar

Tenzer R., Vatrt V., Abdalla A., Dayoub N., 2011, Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems. Applied Geomatics, 3(1): 1-810.1007/s12518-010-0038-5Search in Google Scholar

Vatrt V., 1999, Methodology of testing geopotential models specified in different tide systems. Studia Geoph. Geod., 43: 73-7710.1023/A:1023362109108Search in Google Scholar

Vianna M. L., Menezes V. V., Chambers D. P., 2007, A high resolution satellite-only GRACE-based mean dynamic topography of the South Atlantic Ocean. Geophys. Res. Lett., 34: L2460410.1029/2007GL031912Search in Google Scholar

Vossepoel F. C., 2007, Uncertainties in the mean ocean dynamic topography before the launch of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). J. Geophys. Res., 112: C0501010.1029/2006JC003891Search in Google Scholar

Published Online: 2011-11-30
Published in Print: 2012-1-1

This content is open access.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-011-0019-6/html
Scroll to top button