Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 28, 2013

On the computation of the Picard group for certain singular quartic surfaces

  • Andreas-Stephan Elsenhans EMAIL logo and Jörg Jahnel
From the journal Mathematica Slovaca

Abstract

We test the methods for computing the Picard group of a K3 surface in a situation of high rank. The examples chosen are resolutions of quartics in P 3 having 14 singularities of type A 1. Our computations show that the method of R. van Luijk works well when sufficiently large primes are used.

[1] ARTIN, M.— SWINNERTON-DYER, SIR PETER: The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math. 20 (1973), 249–266. http://dx.doi.org/10.1007/BF0139409710.1007/BF01394097Search in Google Scholar

[2] BEAUVILLE, A.: Complex Algebraic Surfaces. London Math. Soc. Lecture Note Ser. 68, Cambridge University Press, Cambridge, 1983. Search in Google Scholar

[3] ELSENHANS, A.-S.— JAHNEL, J.: K3 surfaces of Picard rank one and degree two. In: Algorithmic Number Theory (ANTS 8). Lecture Notes in Comput. Sci. 5011, Springer, Berlin, 2008, pp. 212–225. http://dx.doi.org/10.1007/978-3-540-79456-1_1410.1007/978-3-540-79456-1_14Search in Google Scholar

[4] ELSENHANS, A.-S.— JAHNEL, J.: K3 surfaces of Picard rank one which are double covers of the projective plane. In: The Higher-dimensional Geometry over Finite Fields, IOS Press, Amsterdam, 2008, pp. 63–77. Search in Google Scholar

[5] ELSENHANS, A.-S.— JAHNEL, J.: On the computation of the Picard group for K3 surfaces, Math. Proc. Cambridge Philos. Soc. 151 (2011), 263–270. http://dx.doi.org/10.1017/S030500411100032610.1017/S0305004111000326Search in Google Scholar

[6] ELSENHANS, A.-S.— JAHNEL, J.: On Weil polynomials of K3 surfaces, In: Algorithmic Number Theory (ANTS 9). Lecture Notes in Comput. Sci. 6197, Springer, Berlin, 2010, pp. 126–141. http://dx.doi.org/10.1007/978-3-642-14518-6_1310.1007/978-3-642-14518-6_13Search in Google Scholar

[7] ELSENHANS, A.-S.— JAHNEL, J.: The Picard group of a K3 surface and its reduction modulo p, Algebra & Number Theory 5 (2011), 1027–1040. http://dx.doi.org/10.2140/ant.2011.5.102710.2140/ant.2011.5.1027Search in Google Scholar

[8] FULTON, W.: Intersection Theory, Springer, Berlin, 1984. 10.1007/978-3-662-02421-8Search in Google Scholar

[9] GRIFFITHS, P.— HARRIS, J.: Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. Search in Google Scholar

[10] ISHII, Y.— NAKAYAMA, N.: Classification of normal quartic surfaces with irrational singularities, J. Math. Soc. Japan 56 (2004), 941–965. http://dx.doi.org/10.2969/jmsj/119133409310.2969/jmsj/1191334093Search in Google Scholar

[11] JESSOP, C. M.: Quartic Surfaces with Singular Points, Cambridge University Press, Cambridge, 1916. Search in Google Scholar

[12] LIPMAN, J.: Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195–279. http://dx.doi.org/10.1007/BF0268460410.1007/BF02684604Search in Google Scholar

[13] VAN LUIJK, R.: K3 surfaces with Picard number one and infinitely many rational points, Algebra & Number Theory 1 (2007), 1–15. http://dx.doi.org/10.2140/ant.2007.1.110.2140/ant.2007.1.1Search in Google Scholar

[14] MILNE, J. S.: On a conjecture of Artin and Tate, Ann. of Math. 102 (1975), 517–533. http://dx.doi.org/10.2307/197104210.2307/1971042Search in Google Scholar

[15] MILNE, J. S.: Étale Cohomology, Princeton University Press, Princeton, 1980. Search in Google Scholar

[16] ROHN, K.: Die Flächen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Gestaltung, Gekrönte Preisschrift, Leipzig, 1886. 10.1007/BF01445172Search in Google Scholar

Published Online: 2013-3-28
Published in Print: 2013-4-1

© 2013 Mathematical Institute, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s12175-012-0094-x/html
Scroll to top button