Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter January 26, 2011

Nearly generalized Jordan derivations

  • M. Eshaghi Gordji EMAIL logo and N. Ghobadipour
From the journal Mathematica Slovaca

Abstract

Let A be an algebra and let X be an A-bimodule. A ∂-linear mapping d: A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ: A → X such that d(a 2) = ad(a)+δ(a)a for all a ∈ A. The main purpose of this paper is to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.

[1] BAAK, C.— MOSLEHIAN, M. S.: On the stability of J*-homomorphism, Nonlinear Anal. 63 (2005), 42–48. http://dx.doi.org/10.1016/j.na.2005.04.00410.1016/j.na.2005.04.004Search in Google Scholar

[2] Stability of Functional Equations of Ulam-Hyers-Rassias Type (S. Czerwik, ed.), Hadronic Press, Florida, 2003. Search in Google Scholar

[3] FENG, W.— ZHANKUI, X.: Generalized Jordan derivations on semiprime rings, Demonstratio Math. 40 (2007), 789–798. Search in Google Scholar

[4] GAJDA, Z.: On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434. http://dx.doi.org/10.1155/S016117129100056X10.1155/S016117129100056XSearch in Google Scholar

[5] Găvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. http://dx.doi.org/10.1006/jmaa.1994.121110.1006/jmaa.1994.1211Search in Google Scholar

[6] HVALA, B.: Generalazed derivations, Comm. Algebra 26 (1998), 1147–1166. http://dx.doi.org/10.1080/0092787980882619010.1080/00927879808826190Search in Google Scholar

[7] HYERS, D. H.: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. http://dx.doi.org/10.1073/pnas.27.4.22210.1073/pnas.27.4.222Search in Google Scholar PubMed PubMed Central

[8] Elementary Operators & Applications, (M. Mathieu, ed.). Proceedings of the International Workshop World Scientific, River Edge, NJ, 1992. Search in Google Scholar

[9] MOSLEHIAN, M. S.: Approximately vanishing of topological cohomology groups, J.Math. Anal. Appl. 318 (2006), 758–771. http://dx.doi.org/10.1016/j.jmaa.2005.06.01810.1016/j.jmaa.2005.06.018Search in Google Scholar

[10] MOSLEHIAN, M. S.: Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Math. Sci. (2006), No. 5, Article ID 93942, 1–8. Search in Google Scholar

[11] PARK, C.: Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), 79–97. http://dx.doi.org/10.1007/s00574-005-0029-z10.1007/s00574-005-0029-zSearch in Google Scholar

[12] PARK, C.-G.: Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras, J. Math. Anal. Appl. 293 (2004), 419–434. http://dx.doi.org/10.1016/j.jmaa.2003.10.05110.1016/j.jmaa.2003.10.051Search in Google Scholar

[13] Functional Equations, Inequalities and Applications (T. M. Rassias, ed.), Kluwer Academic, Dordrecht, 2003. Search in Google Scholar

[14] RASSIAS, T. M.— ŠEMRL, P.: On the behavior of mapping which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993. http://dx.doi.org/10.1090/S0002-9939-1992-1059634-110.1090/S0002-9939-1992-1059634-1Search in Google Scholar

[15] RASSIAS, T. M.: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. 10.1090/S0002-9939-1978-0507327-1Search in Google Scholar

[16] ULAM, S. M.: Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: 1, Stability). Science Editions, John Wiley & Sons, New York, 1964. Search in Google Scholar

Published Online: 2011-1-26
Published in Print: 2011-2-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.2478/s12175-010-0059-x/html
Scroll to top button