Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2013

Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography

  • Věra Špačková EMAIL logo and Jiří Pazourek
From the journal Chemical Papers

Abstract

A method for carbohydrate isomers (saccharide units) identification in flavonoid glycosides after hydrolysis by an HPLC system with two detectors (diode array UV-VIS detector and evaporative light scattering detector) was set up in this work. Experimental procedure was optimized with two types of model glycosides, namely rutin and hesperidin. The model glycosides were hydrolyzed to saccharide units and aglycone parts; the aglycone was characterized by its UV-VIS spectrum and the saccharide unit was identified by its retention time and elution profile (anomeric signals). Acidic and enzymatic hydrolyses were compared in the first step of the method; in acidic hydrolysis, trifluoracetic acid was used, while glucosidase, galactosidase, and hesperidinase were used in enzymatic hydrolysis. A complete enzymatic hydrolysis was achieved with hesperidin and neohesperidin, but not with 3-O-glycosides. The method was applied for the identification of a glycone from a glycoside isolated from Polygonum lapathifolium (Polygonaceae sp.).

[1] Abrankó, L., García-Reyes, J. F., & Molina-Díaz, A. (2012). Systematic bottom-up approach for flavonoid derivative screening in plant material using liquid chromatography high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 995–1006. DOI: 10.1007/s00216-012-5865-2. http://dx.doi.org/10.1007/s00216-012-5865-210.1007/s00216-012-5865-2Search in Google Scholar

[2] Brito-Arias, M. (2007). Synthesis and characterization of glycosides. New York, NY, USA: Springer. Search in Google Scholar

[3] Chandler, B. V., & Harper, K. A. (1961). Identification of saccharides in anthocyanins and other flavonoids. Australian Journal of Chemistry, 14, 586–595. DOI: 10.1071/ch9610586. http://dx.doi.org/10.1071/CH961058610.1071/CH9610586Search in Google Scholar

[4] Chassagne, D., Crouzet, J., Bayonove, C. L., & Baumes, R. L. (1998). Identification of passion fruit glycosides by gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 46, 4352–4357. DOI: 10.1021/jf980416k. http://dx.doi.org/10.1021/jf980416k10.1021/jf980416kSearch in Google Scholar

[5] Chen, H., & Zuo, Y. (2007). Identification of flavonol glycosides in American cranberry fruit. Food Chemistry, 101, 1357–1364. DOI:10.1016/j.foodchem.2006.03.041. http://dx.doi.org/10.1016/j.foodchem.2006.03.04110.1016/j.foodchem.2006.03.041Search in Google Scholar

[6] Davis, B. D., & Brodbelt, J. S. (2005). LC-MSn methods for saccharide characterization of monoglycosyl flavonoids using postcolumn manganese complexation. Analytical Chemistry, 77, 1883–1890. DOI: 10.1021/ac048374o. http://dx.doi.org/10.1021/ac048374o10.1021/ac048374oSearch in Google Scholar

[7] Eom, H. Y., Park, S. Y., Kim, M. K., Suh, J. H., Yeom, H., Min, J. W., Kim, U., Lee, J., Youm, J. R., & Han, S. B. (2010). Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins. Journal of Chromatography A, 1217, 4347–4354. DOI:10.1016/j.chroma.2010.04.047. http://dx.doi.org/10.1016/j.chroma.2010.04.04710.1016/j.chroma.2010.04.047Search in Google Scholar

[8] Fan, P., Terrier, L., Hay, A. E., Marston, A., & Hostettmann, K. (2010). Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae). Fitoterapia, 81, 124–131. DOI:10.1016/j.fitote.2009.08.019. http://dx.doi.org/10.1016/j.fitote.2009.08.01910.1016/j.fitote.2009.08.019Search in Google Scholar

[9] Garegg, P. J. (2004). Synthesis and reactions of glycosides. Advances in Carbohydrate Chemistry and Biochemistry, 59, 69–134. DOI: 10.1016/s0065-2318(04)59003-0. http://dx.doi.org/10.1016/S0065-2318(04)59003-010.1016/S0065-2318(04)59003-0Search in Google Scholar

[10] Godin, B., Agneessens, R., Gerin, P. A., & Delcarte, J. (2011). Composition of structural carbohydrates in biomass: Precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector. Talanta, 85, 2014–2026. DOI:10.1016/j.talanta.2011.07.044. http://dx.doi.org/10.1016/j.talanta.2011.07.04410.1016/j.talanta.2011.07.044Search in Google Scholar

[11] Harborne, J. B. (1965). Plant polyphenols—XIV.: Characterization of flavonoid glycosides by acidic and enzymic hydrolyses. Phytochemistry, 4, 107–120. DOI: 10.1016/s0031-9422(00)86152-x. http://dx.doi.org/10.1016/S0031-9422(00)86152-X10.1016/S0031-9422(00)86152-XSearch in Google Scholar

[12] Hernández-Hernández, O., Calvillo, I., Lebrón-Aguilar, R., Moreno, F. J., & Sanz, M. L. (2012). Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides. Journal of Chromatography A, 1220, 57–67. DOI:10.1016/j.chroma.2011.11.047. http://dx.doi.org/10.1016/j.chroma.2011.11.04710.1016/j.chroma.2011.11.047Search in Google Scholar PubMed

[13] Ikegami, T., Horie, K., Saad, N., Hosoya, K., Fiehn, O., & Tanaka, N. (2008). Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Analytical and Bioanalytical Chemistry, 391, 2533–2542. DOI: 10.1007/s00216-008-2060-6. http://dx.doi.org/10.1007/s00216-008-2060-610.1007/s00216-008-2060-6Search in Google Scholar PubMed

[14] Inoue, K., Yamazaki, K., Kitahara, K. I., Aikawa, Y., Arai, S., & Masuda-Hanada, T. (2012). Erratum: Synthesis of new di-cation type stationary phases for high performance anion-exchange chromatographic separation of carbohydrates. Bunseki Kagaku, 61, 133. DOI: 10.2116/bunsekikagaku. 61.133. http://dx.doi.org/10.2116/bunsekikagaku.61.13310.2116/bunsekikagaku.61.133Search in Google Scholar

[15] Kadumi, K., Yamazaki, K., Kitahara, K. I., Aikawa, Y., Arai, S., & Masuda-Hanada, T. (2011). Synthesis of new di-cation type stationary phases for high performance anion-exchange chromatographic separation of carbohydrates. Bunseki Kagaku, 60, 959–964. DOI: 10.2116/bunsekikagaku.60.959. http://dx.doi.org/10.2116/bunsekikagaku.60.95910.2116/bunsekikagaku.60.959Search in Google Scholar

[16] Kawai, Y., Kumagai, H., Kurihara, H., Yamazaki, K., Sawano, R., & Inoue, N. (2006). β-Glucosidase inhibitory activities of phenylpropanoid glycosides, vanicoside A and B from Polygonum sachalinense rhizome. Fitoterapia, 77, 456–459. DOI:10.1016/j.fitote.2006.05.008. http://dx.doi.org/10.1016/j.fitote.2006.05.00810.1016/j.fitote.2006.05.008Search in Google Scholar PubMed

[17] Kim, Y. S., Yeom, S. J., & Oh, D. K. (2011). Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. Journal of Agricultural and Food Chemistry, 59, 11812–11818. DOI:10.1021/jf2025192. http://dx.doi.org/10.1021/jf202519210.1021/jf2025192Search in Google Scholar PubMed

[18] Lin, L. Z., & Harnly, J. M. (2007). A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. Journal of Agricultural and Food Chemistry, 55, 1084–1096. DOI: 10.1021/jf062431s. http://dx.doi.org/10.1021/jf062431s10.1021/jf062431sSearch in Google Scholar PubMed PubMed Central

[19] Litvinenko, V. I., & Makarov, V. A. (1969). The alkaline hydrolysis of flavonoid glycosides. Chemistry of Natural Compounds, 5, 305–306. DOI: 10.1007/bf00595062. http://dx.doi.org/10.1007/BF0059506210.1007/BF00595062Search in Google Scholar

[20] Lommen, A., Godejohann, M., Venema, D. P., Hollman, P. C. H., & Spraul, M. (2000). Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Analytical Chemistry, 72, 1793–1797. DOI: 10.1021/ac9912303. http://dx.doi.org/10.1021/ac991230310.1021/ac9912303Search in Google Scholar PubMed

[21] Lundborg, M., Fontana, C., & Widmalm, G. (2011). Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy. Biomacromolecules, 12, 3851–3855. DOI: 10.1021/bm201169y. http://dx.doi.org/10.1021/bm201169y10.1021/bm201169ySearch in Google Scholar PubMed PubMed Central

[22] Ma, X. X., Wang, D., Zhang, Y. J., & Yang, C. R. (2011). Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum. Steroids, 76, 1003–1009. DOI:10.1016/j.steroids.2011.03.019. http://dx.doi.org/10.1016/j.steroids.2011.03.01910.1016/j.steroids.2011.03.019Search in Google Scholar

[23] Molnár-Perl, I., & Füzfai, Z. (2005). Chromatographic, capillary electrophoretic and capillary electrochromatographic techniques in the analysis of flavonoids. Journal of Chromatography A, 1073, 201–227. DOI:10.1016/j.chroma.2004.10.068. http://dx.doi.org/10.1016/j.chroma.2004.10.06810.1016/j.chroma.2004.10.068Search in Google Scholar

[24] Nehme, C. J., Bastos, W. L., de Araújo, A. J., & Cavalheiro, A. J. (2005). An HPLC-PAD method to analyse flavonoid glycosides and styrylpyrones from Cryptocarya species (lauraceae). Phytochemical Analysis, 16, 93–97. DOI: 10.1002/pca.818. http://dx.doi.org/10.1002/pca.81810.1002/pca.818Search in Google Scholar

[25] Pazourek, J. (2010). Monitoring of mutarotation of monosaccharides by hydrophilic interaction chromatography. Journal of Separation Science, 33, 974–981. DOI:10.1002/jssc.20090 0880. http://dx.doi.org/10.1002/jssc.200900880Search in Google Scholar

[26] Pieretti, G., Carillo, S., Lanzetta, R., Parrilli, M., Merino, S., Tomás, J. M., & Corsaro, M. M. (2011). Structural determination of the O-specific polysaccharide from Aeromonas hydrophila strain A19 (serogroup O:14) with S-layer. Carbohydrate Research, 346, 2519–2522. DOI:10.1016/j.carres.2011. 08.003. http://dx.doi.org/10.1016/j.carres.2011.08.00310.1016/j.carres.2011.08.003Search in Google Scholar

[27] Qiu, H., Loukotková, L., Sun, P., Tesařová, E., Bosáková, Z., & Armstrong, D. W. (2011). Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography. Journal of Chromatography A, 1218, 270–279. DOI:10.1016/j.chroma.2010.11.027. http://dx.doi.org/10.1016/j.chroma.2010.11.02710.1016/j.chroma.2010.11.027Search in Google Scholar

[28] Quintin, J., & Lewin, G. (2005). Mild alkaline hydrolysis of some 7-O-flavone glycosides. Application to a novel access to rutinose heptaacetate. Tetrahedron Letters, 46, 4341–4343. DOI:10.1016/j.tetlet.2005.04.085. http://dx.doi.org/10.1016/j.tetlet.2005.04.08510.1016/j.tetlet.2005.04.085Search in Google Scholar

[29] Rassi, Z. E. (1995). Carbohydrate analysis: High performance liquid chromatography and capillary electrophoresis. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[30] Ricochon, G., Paris, C., Girardin, M., & Muniglia, L. (2011). Highly sensitive, quick and simple quantification method for mono and disaccharides in aqueous media using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). Journal of Chromatography B, 879, 1529–1536. DOI:10.1016/j.jchromb.2011.03. 044. http://dx.doi.org/10.1016/j.jchromb.2011.03.04410.1016/j.jchromb.2011.03.044Search in Google Scholar

[31] Rotrekl, V. (1998). Rostlinné β-glukosidasy. Chemické Listy, 92, 883–893. (in Czech) Search in Google Scholar

[32] Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30, 3268–3295. DOI:10.1002/jssc.200700261. http://dx.doi.org/10.1002/jssc.20070026110.1002/jssc.200700261Search in Google Scholar

[33] Thabti, I., Elfalleh, W., Hannachi, H., Ferchichi, A., & Campos, M. D. G. (2012). Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. Journal of Functional Foods, 4, 367–374. DOI:10.1016/j.jff.2012.01.006. http://dx.doi.org/10.1016/j.jff.2012.01.00610.1016/j.jff.2012.01.006Search in Google Scholar

[34] Zahid, M., Ishrud, O., Pan, Y., Asim, M., Riaz, M., & Ahmad, U. V. (2002). Flavonoid glycosides from Salvia moorcroftiana Wall. Carbohydrate Research, 337, 403–407. DOI: 10.1016/s0008-6215(02)00008-3. http://dx.doi.org/10.1016/S0008-6215(02)00008-310.1016/S0008-6215(02)00008-3Search in Google Scholar

[35] Zhang, J. M., Wang, J., & Brodbelt, J. S. (2005). Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. Journal of Mass Spectrometry, 40, 350–363. DOI: 10.1002/jms.793. http://dx.doi.org/10.1002/jms.79310.1002/jms.793Search in Google Scholar PubMed

[36] Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L., Jiang, Z., & Hu, P. (2012). Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultrahigh performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Food Composition and Analysis, 25, 142–148. DOI:10.1016/j.jfca.2011.09.004. http://dx.doi.org/10.1016/j.jfca.2011.09.00410.1016/j.jfca.2011.09.004Search in Google Scholar

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0302-8/html
Scroll to top button