Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 27, 2012

Cadmium concentration stabilization in a continuous sulfate reducing bioreactor via sulfide concentration control

  • Pablo López Pérez EMAIL logo , M. Neria González and Ricardo Aguilar López
From the journal Chemical Papers

Abstract

Cadmium concentration stabilization in a single input-single output continuous bioreactor via sulfide concentration, as the controlled and measured output state variable, was assumed. For the above process, a novel kinetic model of the sulfate-reducing process for cadmium removal was proposed and experimentally confirmed. This model has been extended to continuous operation, which is employed as a virtual plant to enable the implementation of the proposed controller. The considered nonlinear control law contains a sigmoid feedback of the given control error in order to regulate the sulfide concentration at the maximum value indirectly leading to cadmium concentrations meeting the environmental regulations. A theoretical frame of the closed-loop stability of the bioreactor is provided under the assumption that bounded trajectories occur in the bioreactor. Finally, numerical experiments proved satisfactory performance of the proposed methodology in comparison with the standard sliding-mode and linear PI controllers.

[1] Aguilar-López, R., Martínez-Guerra, R., & Maya-Yescas, R. (2009). Temperature regulation via PI high-order slidingmode controller design: Application to a class of chemical reactor. International Journal of Chemical Reactor Engineering, 7, S1. DOI: 10.2202/1542-6580.1830. http://dx.doi.org/10.2202/1542-6580.183010.2202/1542-6580.1830Search in Google Scholar

[2] Aguilar-López. R., Martínez-Guerra, R., Puebla, H., & Hernández-Suárez, R. (2010). High order sliding-mode dynamic control for chaotic intracellular calcium oscillations. Nonlinear Analysis: Real World Applications, 11, 217–231. DOI: 10.1016/j.nonrwa.2008.10.054. http://dx.doi.org/10.1016/j.nonrwa.2008.10.05410.1016/j.nonrwa.2008.10.054Search in Google Scholar

[3] Al-Tarazi, M., Heesink, A. B. M., & Versteeg, G. F. (2004). Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling. Chemical Engineering Science, 59, 567–579. DOI: 10.1016/j.ces.2003.11.006. http://dx.doi.org/10.1016/j.ces.2003.11.00610.1016/j.ces.2003.11.006Search in Google Scholar

[4] APHA, AWWA, WPCF (1975). Standard methods for the examination of water and wastewater (14th ed.). Washington, DC, USA: American Public Health Association. Search in Google Scholar

[5] Bakošová, M., Puna, D., Dostál, P., & Závacká J. (2009). Robust stabilization of a chemical reactor. Chemical Papers, 63, 527–536. DOI: 10.2478/s11696-009-0046-2. http://dx.doi.org/10.2478/s11696-009-0046-210.2478/s11696-009-0046-2Search in Google Scholar

[6] Bassirani, N., Abolhassani, M., & Galavi, M. (2011). Distribution of available micronutrients as related to the soil characteristics of Hissar; Haryana (India). African Journal of Agricultural Research, 6, 4239–4242. DOI: 10.5897/ajar10.970. Search in Google Scholar

[7] Bastin, G., & Dochain, D. (Eds.) (1991). On-line estimation and adaptive control of bioreactors. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[8] Benzaouia, A., & El Hajjaji, A. (2011). Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay. International Journal of Innovative Computing, Information and Control, 7, 1533–1547. Search in Google Scholar

[9] Benzaouia, A., Benhayoun, M., & Tadeo, F. (2011). State-feedback stabilization of 2D continuous systems with delays. International Journal of Innovative Computing, Information and Control, 7, 977–988. Search in Google Scholar

[10] Cabrera, G., Perez, R., Gomez, J. M., Abalos, A., & Cantero, D. (2006). Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials, 135, 40–46. DOI: 10.1016/j.jhazmat.2005.11.058. http://dx.doi.org/10.1016/j.jhazmat.2005.11.05810.1016/j.jhazmat.2005.11.058Search in Google Scholar

[11] Cai, Y., & Hua, K. A. (2002). An adaptive query management technique for real-time monitoring of spatial regions in mobile database systems. In Proceedings of 21st IEEE International Performance, Computing, and Communications Conference, April 3–5, 2002 (pp. 259–266), Phoenix, AZ, USA: IEEE. DOI: 10.1109/ipccc.2002.995159. 10.1109/IPCCC.2002.995159Search in Google Scholar

[12] Cord-Ruwisch, R. (1985). A quick method for determination of dissolved and precipitated sulfides in cultures of sulphate-reducing bacteria. Journal of Microbiological Methods, 4, 33–36. DOI: 10.1016/0167-7012(85)90005-3. http://dx.doi.org/10.1016/0167-7012(85)90005-310.1016/0167-7012(85)90005-3Search in Google Scholar

[13] Dąbrowska, L. (2012). Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion. Chemical Papers, 66, 598–606. DOI: 10.2478/s11696-011-0128-9. http://dx.doi.org/10.2478/s11696-011-0128-910.2478/s11696-011-0128-9Search in Google Scholar

[14] De Leeuw, K. (1961). Banach space of Lipschitz functions. Studia Mathematica, 21, 55–66. 10.4064/sm-21-1-55-66Search in Google Scholar

[15] Dochain, D. (2003). State and parameter estimation in chemical and biochemical processes: a tutorial. Journal of Process Control, 13, 801–818. DOI: 10.1016/s0959-1524(03)00026-x. http://dx.doi.org/10.1016/S0959-1524(03)00026-X10.1016/S0959-1524(03)00026-XSearch in Google Scholar

[16] Dochain, D. (Ed.) (2008). Automatic control of bioprocesses. London, UK: ISTE-Wiley. 10.1002/9780470611128Search in Google Scholar

[17] Dochain, D., & Vanrolleghem, P. (2001). Dynamical modeling and estimation in wastewater treatment processes. London, UK: IWA Publishing. Search in Google Scholar

[18] Dostál, P., Bakošová, M., Vojtěšek, J., & Bobál, V. (2011). Adaptive nonlinear control of a continuous stirred tank reactor. Chemical Papers, 65, 636–643. DOI: 10.2478/s11696-011-0057-7. http://dx.doi.org/10.2478/s11696-011-0057-710.2478/s11696-011-0057-7Search in Google Scholar

[19] Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011. http://dx.doi.org/10.1016/j.jenvman.2010.11.01110.1016/j.jenvman.2010.11.011Search in Google Scholar

[20] Gavalas, G. R. (1968). Nonlinear differential equations of chemically reacting systems. Berlin, Germany: Springer. http://dx.doi.org/10.1007/978-3-642-87643-110.1007/978-3-642-87643-1Search in Google Scholar

[21] Ge, S. S., Hang, C. C., & Zhang, T. (1999). Nonlinear adaptive control using neural network and its application to CSTR systems. Journal of Process Control, 9, 313–323. DOI: 10.1016/s0959-1524(98)00054-7. http://dx.doi.org/10.1016/S0959-1524(98)00054-710.1016/S0959-1524(98)00054-7Search in Google Scholar

[22] Głuszcz, P., Zakrzewska, K., Wagner-Doebler I., & Ledakowicz, S. (2008). Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon. Chemical Papers, 62, 232–238. DOI: 10.2478/s11696-008-0017-z. http://dx.doi.org/10.2478/s11696-008-0017-z10.2478/s11696-008-0017-zSearch in Google Scholar

[23] Guo, Y., Hill, D. J., & Jiang, Z. P. (1996). Global nonlinear control of the ball and beam system. In Proceedings of the 35th IEEE International Conference on Decision and Control, December 11–13, 1996 (Vol. 3, pp. 2818–2823). Kobe, Japan: IEEE. http://dx.doi.org/10.1109/CDC.1996.57354310.1109/CDC.1996.573543Search in Google Scholar

[24] Hadj-Sadok, M. Z., & Gouzé, J. L. (2001). Estimation of uncertain models of activated sludge processes with interval observers. Journal of Process Control, 11, 299–310. DOI: 10.1016/s0959-1524(99)00074-8. http://dx.doi.org/10.1016/S0959-1524(99)00074-810.1016/S0959-1524(99)00074-8Search in Google Scholar

[25] He, Y. Q., & Ha, J. D. (2008). Control Lyapunov functions: New framework for nonlinear controller design. In Proceedings of the 17th IFAC World Congress, July 6–11, 2008 (pp. 14138–14143). Seoul, Korea: International Federation of Automatic Control. DOI: 10.3182/20080706-5-kr-1001.0260. Search in Google Scholar

[26] Heinzle, E., Dunn, I. J., & Ryhiner, G. B. (1993). Modeling and control for anaerobic wastewater treatment. Advances in Biochemical Engineering/Biotechnology, 48, 79–114. DOI: 10.1007/bfb0007197. http://dx.doi.org/10.1007/BFb000719710.1007/BFb0007197Search in Google Scholar

[27] Hidaka, T., Horie, T., Akao, S., & Tsuno, H. (2010). Kinetic model of thermophilic L-lactate fermentation by Bacillus coagulans combined with real-time PCR quantification. Water Research, 44, 2554–2562. DOI: 10.1016/j.watres.2010.01.007. http://dx.doi.org/10.1016/j.watres.2010.01.00710.1016/j.watres.2010.01.007Search in Google Scholar PubMed

[28] Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I: Modelling, state space analysis, stability and robustness (Texts in Applied Mathematics, Vol. 48). Berlin, Germany: Springer. 10.1007/b137541Search in Google Scholar

[29] Johnson, K. S., & Coletti, L. J. (2002). In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research, I 49, 1291–1305. DOI: 10.1016/s0967-0637(02)00020-1. http://dx.doi.org/10.1016/S0967-0637(02)00020-110.1016/S0967-0637(02)00020-1Search in Google Scholar

[30] Köhne, J. M., Köhne, S., & Šimůnek, J. (2006). Multi-process herbicide transport in structured soil columns: Experiments and model analysis. Journal of Contaminant Hydrology, 85, 1–32. DOI: 10.1016/j.jconhyd.2006.01.001. http://dx.doi.org/10.1016/j.jconhyd.2006.01.00110.1016/j.jconhyd.2006.01.001Search in Google Scholar PubMed

[31] Kvasnica, M., Herceg, M., Čirka, Ľ., & Fikar, M. (2010). Model predictive control of a CSTR: A hybrid modeling approach. Chemical Papers, 64, 301–309. DOI: 10.2478/s11696-010-0008-8. http://dx.doi.org/10.2478/s11696-010-0008-810.2478/s11696-010-0008-8Search in Google Scholar

[32] Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44, 19–41. DOI: 10.1016/j.bej.2008.12.009. http://dx.doi.org/10.1016/j.bej.2008.12.00910.1016/j.bej.2008.12.009Search in Google Scholar

[33] Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76, 924–941. DOI: 10.1080/0020717031000099029. http://dx.doi.org/10.1080/002071703100009902910.1080/0020717031000099029Search in Google Scholar

[34] Li, S. H., Wang, Z., & Fei, S. M. (2009). Finite-time control of a bioreactor system using terminal sliding mode. International Journal of Innovative Computing, Information and Control, 5, 3495–3504. Search in Google Scholar

[35] Liu, Y. Y., & Yang, G. H. (2011). Quantized static output feedback stabilization of discrete-time networked control systems. International Journal of Innovative Computing, Information and Control, 7, 719–731. Search in Google Scholar

[36] Madar, J., Abonyi, J., & Szeifert, F. (2005). Feedback linearizing control using hybrid neural networks identified by sensitivity approach. Engineering Applications of Artificial Intelligence, 18, 343–351. DOI: 10.1016/j.engappai.2004.09.006. http://dx.doi.org/10.1016/j.engappai.2004.09.00610.1016/j.engappai.2004.09.006Search in Google Scholar

[37] Mailleret, L., Bernard, O., & Steyer, J. P. (2004). Robust nonlinear adaptive control for bioreactors with unknown kinetics. Automatica, 40, 1379–1385. DOI: 10.1016/j.automatica.2004.01.030. http://dx.doi.org/10.1016/j.automatica.2004.01.03010.1016/j.automatica.2004.01.030Search in Google Scholar

[38] Medírcio, S. N., Leaõ, V. A., & Teixeira, M. C. (2007). Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium. Journal of Hazardous Materials, 143, 593–596. DOI: 10.1016/j.jhazmat.2006.09.079. http://dx.doi.org/10.1016/j.jhazmat.2006.09.07910.1016/j.jhazmat.2006.09.079Search in Google Scholar PubMed

[39] Mjalli, F. S., & Al-Asheh, S. (2005). Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process. Chemical Engineering & Technology, 28, 1191–1200. DOI: 10.1002/ceat.200500166. http://dx.doi.org/10.1002/ceat.20050016610.1002/ceat.200500166Search in Google Scholar

[40] Morales-Díaz, A., & Carlos-Hernández, S. (2010). Saturated control design for bounded substrate regulation in a continuous anaerobic bioreactor. Revista Mexicana de Ingeniería Química, 9, 219–229. Search in Google Scholar

[41] Munasinghe, S. R., & Nakamura, M. (2007). Hyperbolic tangent function based force-position compliant controller for robotic devices. In International Conference on Control, Automation and Systems ICCAS’ 07, October 17–20, 2007 (pp. 2397–2401). Seoul, Korea: IEEE. DOI: 10.1109/ICCAS.2007.4406763. 10.1109/ICCAS.2007.4406763Search in Google Scholar

[42] Neria-González, I., Wang, E. T., Ramirez, F., Romero, J. M., & Hernández-Rodríguez, C. (2006). Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe, 12, 122–133. DOI: 10.1016/j.anaerobe.2006.02.001. http://dx.doi.org/10.1016/j.anaerobe.2006.02.00110.1016/j.anaerobe.2006.02.001Search in Google Scholar

[43] Nielsen, A. H., Hvitved-Jacobsen, T., & Vollertsen, J. (2005). Kinetics and stoichiometry of sulfide oxidation by sewer biofilms. Water Research, 39, 4119–4125. DOI: 10.1016/j.watres.2005.07.031. http://dx.doi.org/10.1016/j.watres.2005.07.03110.1016/j.watres.2005.07.031Search in Google Scholar

[44] Noguera, D. R., Brusseau, G. A., Rittmann, B. E., & Stahl, D. A. (1998). Unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnology and Bioengineering, 59, 732–746. DOI: 10.1002/(SICI)1097-0290(19980920)59:6<732::AID-BIT10>3.0.CO;2-7. http://dx.doi.org/10.1002/(SICI)1097-0290(19980920)59:6<732::AID-BIT10>3.0.CO;2-710.1002/(SICI)1097-0290(19980920)59:6<732::AID-BIT10>3.0.CO;2-7Search in Google Scholar

[45] Oliveira, R. (2004). Combining first principles modeling and artificial neural networks: a general framework. Computers & Chemical Engineering, 28, 755–766, DOI: 10.1016/j.compchemeng.2004.02.014. http://dx.doi.org/10.1016/j.compchemeng.2004.02.01410.1016/j.compchemeng.2004.02.014Search in Google Scholar

[46] Pokrovsky, O. S., Feurtet-Mazel, A., Martinez, R. E., Morin, S., Baudrimont, M., Duong, T., & Coste, M. (2010). Experimental study of cadmium interaction with periphytic biofilms. Applied Geochemistry, 25, 418–427. DOI: 10.1016/j.apgeochem.2009.12.008. http://dx.doi.org/10.1016/j.apgeochem.2009.12.00810.1016/j.apgeochem.2009.12.008Search in Google Scholar

[47] Postgate, J. R. (1985). The sulphate-reducing bacteria (2nd Ed.). Cambridge, UK: Cambridge University Press. Search in Google Scholar

[48] Radha, S., & Seenayya, G. (1992). Environmental factors affecting the bioavailability and toxicity of Cd and Zn to an anaerobic bacterium Desulfovibrio. Science of the Total Environment, 125, 123–136. DOI: 10.1016/0048-9697(92)90386-7. http://dx.doi.org/10.1016/0048-9697(92)90386-710.1016/0048-9697(92)90386-7Search in Google Scholar

[49] Rapaport, A., & Harmand, J. (2002). Robust regulation of a class of partially observed nonlinear continuous bioreactors. Journal of Process Control, 12, 291–302. DOI: 10.1016/s0959-1524(01)00029-4. http://dx.doi.org/10.1016/S0959-1524(01)00029-410.1016/S0959-1524(01)00029-4Search in Google Scholar

[50] Reddy, G. P., & Chidambaram, M. (1994). Nonlinear control of bioreactors with input multiplicities. Bioprocess and Biosystems Engineering, 11, 97–100. DOI: 10.1007/bf00369604. 10.1007/BF00369604Search in Google Scholar

[51] Roman, M., & Selişteanu, D. (2012). Nonlinear on-line estimation and adaptive control of a wastewater treatment bio process. Electronics and Electrical Engineering, 117, 23–28. DOI: 10.5755/j01.eee.117.1.1047. http://dx.doi.org/10.5755/j01.eee.117.1.104710.5755/j01.eee.117.1.1047Search in Google Scholar

[52] Saadatjoo, F., Derhami, V., & Karbassi, S. M. (2011). Stabilization of simultaneous linear multivariable systems while improving time-response using genetic algorithms. International Journal of Innovative Computing, Information and Control, 7, 151–160. Search in Google Scholar

[53] Sampaio, R. M. M., Timmers, R. A., Xu, Y., Keesman, K. J., & Lens, P. N. L. (2009). Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. Journal of Hazardous Materials, 165, 256–265. DOI: 10.1016/j.jhazmat.2008.09.117. http://dx.doi.org/10.1016/j.jhazmat.2008.09.11710.1016/j.jhazmat.2008.09.117Search in Google Scholar

[54] Santos, B. F., Leite, M. S., Silva F. V., & Fileti, A. M. F. (2012). Neural network model predictive control of a styrene polymerization plant: online testing using an electronic worksheet. Chemical Papers, 66, 654–663. DOI: 10.2478/s11696-012-0165-z. http://dx.doi.org/10.2478/s11696-012-0165-z10.2478/s11696-012-0165-zSearch in Google Scholar

[55] Sastry, S. S., & Isidori, A. (1989). Adaptive control of linearizable systems. IEEE Transactions on Automatic Control, 34, 1123–1131. DOI: 10.1109/9.40741. http://dx.doi.org/10.1109/9.4074110.1109/9.40741Search in Google Scholar

[56] Schügerl, K. (2001). Progress in monitoring, modelling and control of bioprocesses during the last 20 years. Journal of Biotechnology, 85, 149–173. DOI: 10.1016/s0168-1656(00)00361-8. http://dx.doi.org/10.1016/S0168-1656(00)00361-810.1016/S0168-1656(00)00361-8Search in Google Scholar

[57] Tong, S. C., Wang, T. C., & Zhang, W. (2008). Fault tolerant control for uncertain fuzzy systems with actuator faults. International Journal of Innovative Computing, Information and Control, 4, 2461–2474. Search in Google Scholar

[58] van Wageningen, H. S., Sötemann, S. V., Ristow, N. E., Wentzel, M. C., & Ekama, G. A. (2006). Development of a kinetic model for biological sulphate reduction with sewage sludge as substrate. Water SA, 32, 619–626. Search in Google Scholar

[59] Xu, F., & Yu, P. (2010). Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions. Journal of Mathematical Analysis and Applications, 362, 252–274. DOI: 10.1016/j.jmaa.2009.03.041. http://dx.doi.org/10.1016/j.jmaa.2009.03.04110.1016/j.jmaa.2009.03.041Search in Google Scholar

[60] Yin, Y. Y., Liu, F., & Shi, P. (2011). Finite-time gain-scheduled control on stochastic bioreactor systems with partially known transition jump rates. Circuits, Systems, and Signal Processing, 30, 609–627. DOI: 10.1007/s00034-010-9236-y. http://dx.doi.org/10.1007/s00034-010-9236-y10.1007/s00034-010-9236-ySearch in Google Scholar

[61] Yüzgeç, U., Becerikli, Y., & Türker, M. (2008). Dynamic neural-network-based model-predictive control of an industrial baker’s yeast drying process. IEEE Transactions on Neural Networks, 19, 1231–1242. DOI: 10.1109/TNN.2008.2000205. http://dx.doi.org/10.1109/TNN.2008.200020510.1109/TNN.2008.2000205Search in Google Scholar

Published Online: 2012-12-27
Published in Print: 2013-3-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0274-8/html
Scroll to top button