Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 23, 2011

Determination of carbon in solidified sodium coolant using new ICP-OES methods

  • Tomáš Vaculovič EMAIL logo , Vítězslav Otruba , Oldřich Matal and Viktor Kanický
From the journal Chemical Papers

Abstract

New methods for the determination of carbon in sodium using laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and ICP-OES with pneumatic nebulisation (PN-ICP-OES) were developed. The determination was required for the study of the carbon dioxide reaction with molten sodium at high temperatures (300–600°C). After exposition to CO2, the solidified sodium sample was subjected to direct solid analysis by LA-ICP-OES and to solution analysis. For the determination of carbon in the sodium sample surface layer by LA-ICP-OES, three different matrices containing sodium were tested (NaCl, NaF, and Na2B4O7 · 10H2O) as calibration pellets. The calibration dependences were improved using sodium as the internal standard. Average carbon content in the sodium bulk sample was determined by PN-ICP-OES after the sample dissolution by water vapour.

[1] Beguin, F., & Setton, R. (1970). Action des métaux alcalins sur l’anhydride carbonique. Bulletin de la Société Chimique de France, 11, 3814–3816. Search in Google Scholar

[2] Choi, J. H., Suk, S. D., Cho, D., Kim, J. M., Hahn, D., & Cahalan, J. H. (2006). Capsule test for investigating sodium-carbon dioxide interaction. In Proceedings of an International Congress on Advances in Nuclear Power Plants (ICAPP 2006), 4–8 June 2006, Reno, NV, USA (pp. 762–769). Red Hook, NY, USA: Curran Associates, Inc. Search in Google Scholar

[3] Cordfunke, E. H. P., & Ouweltjes, W. (1969). The reaction between CO2 and liquid sodium. Journal of Nuclear Materials, 33, 328–332. DOI: 10.1016/0022-3115(69)90030-0. http://dx.doi.org/10.1016/0022-3115(69)90030-010.1016/0022-3115(69)90030-0Search in Google Scholar

[4] Das, S. K., Sharma, A. K., Parida, F. C., & Kasinathan, N. (2009). Experimental study on thermo-chemical phenomena during interaction of limestone concrete with liquid sodium under inert atmosphere. Construction and Building Materials, 23, 3375–3381. DOI: 10.1016/j.conbuildmat.2009.06.021. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.02110.1016/j.conbuildmat.2009.06.021Search in Google Scholar

[5] Dostal, V., Driscoll, M. J., & Hejzlar, P. (2004). A supercritical carbon dioxide cycle for next generation nuclear reactors. Cambridge, MA, USA: MIT Center for Advanced Nuclear Energy Systems (CANES). (Advanced Nuclear Power (ANP) Program, MIT-ANP-TR-100). Search in Google Scholar

[6] Eckschlager, K., Horsák, I., & Kodejš, Z. (1980). Vyhodnocování analytických výsledků a metod. Prague, Czechoslovakia: SNTL, Alfa. Search in Google Scholar

[7] Kozlov, F. A., Kuznetsov, E. K., Vorob’eva, T. A., Ul’mann, K., Reetts, T., & Rikhter, V. (1981). Electrochemical cell for measuring the activity of oxygen in sodium. Atomic Energy, 51, 516–519. DOI: 10.1007/BF01139079. http://dx.doi.org/10.1007/BF0113907910.1007/BF01139079Search in Google Scholar

[8] Migliori, A., & Swift, G. W. (1988). Liquid-sodium thermoacoustic engine. Applied Physics Letters, 53, 355–357. DOI: 10.1063/1.99913. http://dx.doi.org/10.1063/1.9991310.1063/1.99913Search in Google Scholar

[9] Minczewski, J., Dancewicz, D., & Wasowicz, S. (1962). Determination of traces of oxygen in metallic sodium. Acta Chimica Academiae Scientiarum Hungaricae, 3, 51–57. Search in Google Scholar

[10] Rutkauskas, V. J. (1968). Determination of the solubility of oxygen in sodium by vacuum distillation. Los Alamos, CA, USA: Los Alamos Scientific Laboratory of the University of California. (LA-3879). http://dx.doi.org/10.2172/447837810.2172/4478378Search in Google Scholar

[11] Schreinlechner, I., Sattler, P., & Kozuh, J. (1980). Determination of trace impurities in alkali metals. Microchimica Acta, 74, 423–433. DOI: 10.1007/BF01197610. http://dx.doi.org/10.1007/BF0119761010.1007/BF01197610Search in Google Scholar

[12] Simon, N., Latgé, C., & Gicquel, L. (2008). Investigation of sodium-carbon dioxide interactions with calorimetric studies. In Proceedings of an International Congress on Advances in Nuclear Power Plants (ICAPP 2007): The Nuclear Renaissance at Work, 13–18 May 2007, Nice, France (Vol. 5, pp. 2996–3003). Red Hook, NY, USA: Curran Associates, Inc. Search in Google Scholar

[13] Subramani, A., Jayanti, S., Shet, U. S. P., & Selvaraj, P. (2009). Dynamics of liquid sodium pool spreading under sodium fire conditions. Nuclear Engineering and Design, 239, 1354–1361. DOI: 10.1016/j.nucengdes.2009.04.002. http://dx.doi.org/10.1016/j.nucengdes.2009.04.00210.1016/j.nucengdes.2009.04.002Search in Google Scholar

[14] U.S. DOE Nuclear Energy Research Advisory Committee (NERAC) and the Generation IV International Forum (GIF) (2002). A technology roadmap for generation IV nuclear energy system. Washington, D.C., USA: NERAC and GIF. (GIF-002-00). Search in Google Scholar

[15] Xie, C., Wen, X.-M., Jia, Y.-T., & Sun, S.-P. (2001). Determination of potassium in sodium by flame atomic emission spectroscopy. Spectroscopy and Spectral Analysis, 21, 366–369. Search in Google Scholar

[16] Yamaguchi, A., Takata, T., Ohshima, H., & Kurihara, A. (2009). Thermal influence on steam generator heat transfer tube during sodium-water reaction accident of sodium-cooled fast reactor. Nuclear Technology, 167, 118–126. 10.13182/NT09-A8856Search in Google Scholar

[17] Zlámal, J., Polišenský, V., & Kratochvíl, J. (1980). Appliance for cleaning liquid alkali metals. CS Patent No. 212199. Prague, Czechoslovakia: Úřad pro vynálezy a objavy (Industrial Property Office). Search in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0054-x/html
Scroll to top button