Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 21, 2011

An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5

  • Shiyu Tan EMAIL logo , Yang Yang , Ziping Luo , Shuo Zhao , Dafu Huang , Jun Zhang , Lichun Dong and Gang Wang
From the journal Chemical Papers

Abstract

p-Aminobenzene sulfonamide (sulfanilamide, SN) is the simplest and most-used sulfonamide medicine. The key step of SN production via the commonly used chlorosulfonic acid routine is the synthesis of p-acetaminobenzenesulfonyl chloride (P-ASC). A large amount of HSO3Cl has to be used in the traditional process, which results in serious environmental problems. In this study, an alternative chlorosulfonic acid process to synthesize P-ASC was investigated by partially substituting HSO3Cl by PCl5 as the chlorination agent. Compared with the traditional process, the molar ratio of HSO3Cl to acetanilide (the main raw material) can be decreased from 4.96 to 2.1 using CCl4 as the diluent; also, addition of a small amount of NH4Cl was found to significantly increase the P-ASC yield. Operating conditions of the reaction were studied first by single-factor experiments and later by orthogonal experiments to obtain optimum operating conditions under which the P-ASC yield can reach as high as 86.3 %.

[1] Boekman, F., Bohman, O., & Siegbahn, H. O. G. (1992). ESCA studies of phase transfer catalysts in solution. 2. Surface ion pairing and salting-out effects. The Journal of Physical Chemistry, 96, 2278–2283. DOI: 10.1021/j100184a047. http://dx.doi.org/10.1021/j100184a04710.1021/j100184a047Search in Google Scholar

[2] Castaner, J., Riera, J., Carilla=., J., Robert, A, Molins, E., & Miravitlles, C. (1991). A new trifluoromethylating agent: synthesis of polychlorinated (trifluoromethyl)benzenes and 1,3-bis(trifluoromethyl)benzenes and conversion into their trichloromethyl counterparts and molecular structure of highly strained polychloro-m-xylenes. The Journal of the Organic Chemistry, 56, 103–110. DOI: 10.1021/jo00001a022. http://dx.doi.org/10.1021/jo00001a02210.1021/jo00001a022Search in Google Scholar

[3] Emerson, D. W., & Ifalade, S. O. (2005). Improved preparation of macroporous, chlorosulfonated poly(styrene-codivinylbenzene) and conversion to sulfonamides and sulfonylhydrazines. Industrial & Engineering Chemistry Research, 44, 7045–7048. DOI: 10.1021/ie050371u. http://dx.doi.org/10.1021/ie050371u10.1021/ie050371uSearch in Google Scholar

[4] Fan, X., Wang, J. G., & Wang, J. P. (2005). Optimum semimicro synthesis of P-aminobenzene sulfonamide. Journal of Luoyang Normal Univiversity, 2, 133–135. Search in Google Scholar

[5] Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R., & Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 3, 509–520. DOI: 10.1038/nrd1416. http://dx.doi.org/10.1038/nrd141610.1038/nrd1416Search in Google Scholar

[6] Galat, A. (1944). New processes for sulfanilamide. Industrial & Engineering Chemistry, 36, 192. DOI: 10.1021/ie50410a023. http://dx.doi.org/10.1021/ie50410a02310.1021/ie50410a023Search in Google Scholar

[7] Gao, F., Wang, Y., & Zeng, Y. (2002). New process study on sulfanilamide synthesis by chlorobenzene. Chemical Production and Technology, 9, 4–6. Search in Google Scholar

[8] Huang, Z., Lin, Z., & Huang, J. (2001). A novel kind of antitumour drugs using sulfonamide as parent compound. European Journal of Medicinal Chemistry, 36, 863–872. DOI: 10.1016/S0223-5234(01)80002-7. http://dx.doi.org/10.1016/S0223-5234(01)01285-510.1016/S0223-5234(01)80002-7Search in Google Scholar

[9] Kealey, D., & Haines, P. J. (2002). BIOS instant notes in analytical chemistry. New York, NY, USA: Taylor & Francis. 10.4324/9780203645444Search in Google Scholar

[10] Kong, X., Teng, Y., & Zhang, T. (1998). Synthesis of pacetamidobenzene sulfone chloride. Journal of Shenyang Institute of Chemical Technology, 12, 117–121. Search in Google Scholar

[11] Li, G., Liu, J., & Li, J. (2007). Improved synthetic technology for the organic dye intermediate: p-acetamidobenzene sulfonyl chloride. Journal of Henan Normal University (Natural Science), 35, 182–184. Search in Google Scholar

[12] Li, P. (2002). Treatment of waste acid in chlorosulfonic acid production process. Chemical Intermediates, 17, 15–16. Search in Google Scholar

[13] Li, Y., & Hu, C. (2005). Experimental design and data analysis. Beijing, China: Chemical Industry Press. Search in Google Scholar

[14] Lin, X., Wei, R.-Q., Liu, X.-N., & Zhou, R. (2009). Study on the function group uniformity of polystyrol sulfonyl chloride resins by infrared spectra. Spectroscopy and Spectral Analysis, 29, 1801–1804. DOI: 10.3964/j.issn.1000-0593(2009)07-1801-04. Search in Google Scholar

[15] Martin, H., Gysin, H., Neracher, O., & Hirt, R. (1943). U.S. Patent No. 243,5974. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[16] Martin. H., & Hirt, R. (1947). U.S. Patent No. 242,9207. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[17] Meier, M., & Tronich, W. (1992). U.S. Patent No. 513,6043. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[18] Meng, G. (1995). Improvement for the synthesis and purification of p-acetate-amino-benzene-sulfonyl chloride. Jounal of Henan Normal University (Medical Science), 14, 179–180. Search in Google Scholar

[19] Montgomery, D. C. (2004). Design and analysis of experiments (6th Ed.). New York, NY, USA: Wiley. Search in Google Scholar

[20] Moore, R. M., Jr. (2003). A convenient synthesis of high-purity 1-chloro-2,6-difluorobenzene. Organic Process Research & Development, 7, 921–924. DOI: 10.1021/op0340816. http://dx.doi.org/10.1021/op034081610.1021/op0340816Search in Google Scholar

[21] Pence, L. H., & Winter, H. C. (1939). Purification of pacetaminobenzenesulfonyl chloride. Journal of the American Chemical Society, 61, 2977–2978. DOI: 10.1021/ja01265a509. http://dx.doi.org/10.1021/ja01265a50910.1021/ja01265a509Search in Google Scholar

[22] Pouchert, C. J. (1970). The Aldrich library of infrared spectra. Milwaukee, WI, USA: Aldrich Chemical Co Inc. Search in Google Scholar

[23] Smiles, S., & Stewart, J. (1925). p-Acetaminobenzenesulfonyl chloride. Organic Syntheses, 5, 1. Search in Google Scholar

[24] Song, B. (1990). New process for acetanilide chlorosulfonation. Tianjin Chemical Industry, 2, 24–29. Search in Google Scholar

[25] Su, Y., & Hao, Y. (2005). Improved technology for synthesis of p-acetylsulfanilamide. Journal Hebei Normal University (Natural Science Edition), 29, 58–60. Search in Google Scholar

[26] Su, Y., & Yang, J. (2002). Improved technology for synthesis of p-acetamidobenzenesulfonyl chloride. Journal Hebei Normal University (Natural Science Edition), 26, 162–164. Search in Google Scholar

[27] Xin, J.-F., Ma, J.-H., Zhang, S.-F., Chen, S.-R., & Li, H.-Y. (2006). Review of the methods of preparing acyl chlorides. Hebei Chemical Engineering Industry, 29, 16–18. Search in Google Scholar

[28] Zeng, Z. (1981). Organic chemical experiments. Beijing, China: People’s Education Press. Search in Google Scholar

[29] Zhang, S. (1991). Handbook of fine organic chemical technology. Beijing, China: Science Press. Search in Google Scholar

[30] Zhao, Z., Wolkenberg, S. E., Lu, M., Munshi, V., Moyer, G., Feng, M., Carella, A. V., Ecto, L. T., Gabryelski, L. J., Lai, M.-T., Prasad, S. G., Yan, Y., McGaughey, G. B., Miller, M. D., Lindsley, C. W., Hartman, G. D., Vacca, J. P., & Williams, T. M. (2008). Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorganic & Medicinal Chemistry Letters, 18, 554–559. DOI: 10.1016/j.bmcl.2007.11.085. http://dx.doi.org/10.1016/j.bmcl.2007.11.08510.1016/j.bmcl.2007.11.085Search in Google Scholar PubMed

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0026-1/html
Scroll to top button