Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2010

Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis

  • Filippo Rossi EMAIL logo , Giuseppe Perale and Maurizio Masi
From the journal Chemical Papers

Abstract

The role of phosphate buffer saline solution (PBS) was investigated here as a solvent in the polycondensation synthesis of an injectable agar-carbomer based hydrogel, a promising new material specifically intended for regenerative medicine applications. The effects of PBS, with respect to standard distilled water (DW), were quantitatively assessed. Experiments were performed both from physico-chemical and biological points of view. Titration showed higher stability due to the presence of the buffer solution; ESEM analysis confirmed its distribution along the polymeric fibers and infrared spectroscopy showed the consequent anionic nature of the polymeric network. This electrostatic nature of the matrix was confirmed by mass equilibrium swelling data performed at different pH values of the swelling medium. A very relevant role of the solvent was observed also with respect to cell housing inside such hydrogels: living cell counts showed a high amount of cells surviving the latency period of encapsulation in hydrogel when PBS was applied while only very few survived in a deionized water based gel. Obtained data allowed a novel understanding of the causeeffect cascades of all observed phenomena which suggest the PBS fundamental role both in fine control of hydrogel preparation and in material tuning according to the specific needs of different target tissues; the latter being a feature of primary importance when applying hydrogels as cell carriers in regenerative medicine applications.

[1] Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., & Forsberg-Nilsson, K. (2007). Enhanced neuronal differentiation in a three-dimensional collagenhyaluronan matrix. Journal of Neuroscience Research, 85, 2138–2146. DOI: 10.1002/jnr.21358. http://dx.doi.org/10.1002/jnr.2135810.1002/jnr.21358Search in Google Scholar PubMed

[2] Chan, A.W., Whitney, R. A., & Neufeld, R. J. (2009). Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules, 10, 609–616. DOI: 10.1021/bm800594f. http://dx.doi.org/10.1021/bm801316z10.1021/bm800594fSearch in Google Scholar PubMed

[3] Choi, J., Bodugoz-Senturk, H., Kung, H. J., Malhi, A. S., & Muratoglu, O. K. (2007). Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials, 28, 772–780. DOI: 10.1016/j.biomaterials.2006.09.049. http://dx.doi.org/10.1016/j.biomaterials.2006.09.04910.1016/j.biomaterials.2006.09.049Search in Google Scholar PubMed

[4] Crompton, K. E., Goud, J. D., Bellamkonda, R. V., Gengenbach, T. R., Finkelstein, D. I., Horne, M. K., & Forsythe, J. S. (2007). Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 28, 441–449. DOI: 10.1016/j.biomaterials.2006.08.044. http://dx.doi.org/10.1016/j.biomaterials.2006.08.04410.1016/j.biomaterials.2006.08.044Search in Google Scholar PubMed

[5] Dulbecco, R., & Vogt, M. (1954). Plaque formation and isolation of pure lines with poliomyelitis viruses. The Journal of Experimental Medicine, 99, 167–182. DOI: 10.1084/jem.99.2.167. http://dx.doi.org/10.1084/jem.99.2.16710.1084/jem.99.2.167Search in Google Scholar PubMed PubMed Central

[6] Dumitriu, S. (2002). Polymeric biomaterials (2nd ed.). New York, NY, USA: Marcel Dekker. Search in Google Scholar

[7] Ebara, M., Yamato, M., Nagai, S., Aoyagi, T., Kikuchi, A., Sakai, K., & Okano, T. (2004). Incorporation of new carboxylate functionalized co-monomers to temperature-responsive polymer-grafted cell culture surfaces. Surface Science, 570, 134–141. DOI: 10.1016/j.susc.2004.06.183. http://dx.doi.org/10.1016/j.susc.2004.06.18310.1016/j.susc.2004.06.183Search in Google Scholar

[8] Fatimi, A., Tassin, J.-F., Turczyn, R., Axelos, A. V. M., & Weiss, P. (2009). Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization. Acta Biomaterialia, 5, 3423–3432. DOI: 10.1016/j.actbio. 2009.05.030. http://dx.doi.org/10.1016/j.actbio.2009.05.03010.1016/j.actbio.2009.05.030Search in Google Scholar PubMed

[9] Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY, USA: Cornell University Press. Search in Google Scholar

[10] Gorbet, M. B., Tanti, N. C., Jones, L., & Sheardown, H. (2010). Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions. Molecular Vision, 16, 272–282. Search in Google Scholar

[11] Garripelli, V. K., Kim, J.-K., Namgung, R., Kim, W. J., Repka, M. A., & Jo, S. (2010). A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomaterialia, 6, 477–485. DOI: 10.1016/j.actbio.2009.07.005. http://dx.doi.org/10.1016/j.actbio.2009.07.00510.1016/j.actbio.2009.07.005Search in Google Scholar PubMed PubMed Central

[12] Hynd, M. R., Turner, J. N., & Shain, W. (2007). Applications of hydrogels for neural cell engineering. Journal of Biomaterial Science, Polymer Edition, 18, 1223–1244. DOI: 10.1163/156856207782177909. http://dx.doi.org/10.1163/15685620778217790910.1163/156856207782177909Search in Google Scholar PubMed

[13] Khan, F., Tare, R. S., Oreffo, R. O. C., & Bradley, M. (2009). Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angewandte Chemie International Edition, 48, 978–982. DOI: 10.1002/anie.200804096. http://dx.doi.org/10.1002/anie.20080409610.1002/anie.200804096Search in Google Scholar PubMed

[14] Kuckling, D. (2009) Responsive hydrogel layers—from synthesis to applications. Colloid and Polymer Science, 287, 881–891. DOI: 10.1007/s00396-009-2060-x. http://dx.doi.org/10.1007/s00396-009-2060-x10.1007/s00396-009-2060-xSearch in Google Scholar

[15] Lanza, R., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering. San Diego, CA, USA: Academic Press. Search in Google Scholar

[16] Little, L., Healy, K. H., & Schaffer, D. (2008). Engineering biomaterials for synthetic neural stem cell microenvironments. Chemical Reviews, 108, 1787–1796. DOI: 10.1021/cr078228t. http://dx.doi.org/10.1021/cr078228t10.1021/cr078228tSearch in Google Scholar PubMed

[17] Luo, R., & Li, H. (2009). A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel. Acta Biomaterialia, 5, 2920–2928. DOI: 10.1016/j.actbio.2009.04.009. http://dx.doi.org/10.1016/j.actbio.2009.04.00910.1016/j.actbio.2009.04.009Search in Google Scholar PubMed

[18] Luo, Y., & Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3, 249–253. DOI: 10.1038/nmat1092. http://dx.doi.org/10.1038/nmat109210.1038/nmat1092Search in Google Scholar PubMed

[19] Perale, G., Giordano, C., Bianco, F., Daniele, F., Rossi, F., Matteoli, M., & Masi, M. (2008). Hydrogel for cell housing in the brain and in the spinal cord. The International Journal of Artificial Organs, 31, 613. Search in Google Scholar

[20] Rajagopal, K., Lamm, M. S., Haines-Butterick, L. A., Pochan, D. J., & Schneider, J. P. (2009). Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules, 10, 2619–2625. DOI: 10.1021/bm900544e. http://dx.doi.org/10.1021/bm900544e10.1021/bm900544eSearch in Google Scholar PubMed

[21] Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press. Search in Google Scholar

[22] Shim, W. S., Yoo, J. S., Bae, Y. H., & Lee, D. S. (2005). Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules, 6, 2930–2934. DOI: 10.1021/bm050521k. http://dx.doi.org/10.1021/bm050521k10.1021/bm050521kSearch in Google Scholar PubMed

[23] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r. http://dx.doi.org/10.1021/ma901530r10.1021/ma901530rSearch in Google Scholar

[24] Simonetta, M., & Carrà, S. (1969). General and theoretical aspects of the COOH and COOR groups. In S. Patai (Ed.), Carboxylic acids and esters. New York, NY, USA: Wiley. DOI: 10.1002/9780470771099.ch1. 10.1002/9780470771099.ch1Search in Google Scholar

[25] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.20080210610.1002/adma.200802106Search in Google Scholar PubMed PubMed Central

[26] Tabata, Y. (2009). Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 6, S311–S324. DOI: 10.1098/rsif.2008.0448.focus. http://dx.doi.org/10.1098/rsif.2008.0448.focus10.1098/rsif.2008.0448.focusSearch in Google Scholar PubMed PubMed Central

[27] Tunesi, M., Rossi, F., Daniele, F., Bossio, C., Perale, G., Bianco, F., Matteoli, M., Giordano, C., & Cigada, A. (2009). A novel hydrogel formulation as promising cell carrier. Regenerative Medicine, 4, S271–S306. DOI: 10.2217/rme.09.s8. http://dx.doi.org/10.2217/rme.09.s810.2217/rme.09.s8Search in Google Scholar

[28] Vidović, E., Klee, D., & Höcker, H. (2009). Degradation behavior of hydrogels from poly(vinyl alcohol)-graft-[poly(rac-lactide)/poly(rac-lactide-co-glycolide)]: Influence of the structure and composition on the material’s stability. Journal of Applied Polymer Science, 112, 1538–1545. DOI: 10.1002/app.29445. http://dx.doi.org/10.1002/app.2944510.1002/app.29445Search in Google Scholar

[29] Wang, C., Adrianus, G. N., Sheng, N., Toh, S., Gong, Y., & Wang, D.-A. (2009). In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials, 30, 6986–6995. DOI: 10.1016/j.biomaterials.2009.09.006. http://dx.doi.org/10.1016/j.biomaterials.2009.09.00610.1016/j.biomaterials.2009.09.006Search in Google Scholar PubMed

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0052-4/html
Scroll to top button