Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 5, 2010

Implementation of marginal quantities in management of cogeneration units operating in liberal market environment

  • Miroslav Variny EMAIL logo and Otto Mierka
From the journal Chemical Papers

Abstract

It is far more important how the cogeneration units are operated than whether they represent the latest technology progress or not. Therefore, for the management of cogeneration units it is a key issue to find optimal operating conditions bringing in the largest income. This may be achieved by combined marginal and overall performance criteria application. To prove this statement, two cogeneration units operating in the Slovak Republic, marked as A and B, were examined. Both of them use the liberal market environment and participate in provisioning ancillary services. Marginal profit values without and with ancillary services provisioning clearly indicate the most advantageous base load value, which is in both cases in the middle of the load regulation range. As shown, together with the total profit function, they are very suitable indicators of the optimal load location and a flexible tool for the market situation evaluation. Heat delivery capability of B to customers reaches its maximum at the middle of the load regulation range, again reinforcing the optimal part load operation. Being equipped with supplementary firing, the marginal steam production of B was found to be higher than 100 % which confirms that the rules for marginal quantities values are not as strict as those for overall and specific quantities.

[1] Benelmir, R., & Feidt, M. (1998). Energy cogeneration systems and energy management strategy. Energy Conversion and Management, 39, 1791–1802. DOI: 10.1016/S0196-8904(98)00055-7. http://dx.doi.org/10.1016/S0196-8904(98)00055-710.1016/S0196-8904(98)00055-7Search in Google Scholar

[2] Boonekamp, P. G. M. (2006). Evaluation of methods used to determine realized energy savings. Energy Policy, 34, 3977–3992. DOI: 10.1016/j.enpol.2005.09.020. http://dx.doi.org/10.1016/j.enpol.2005.09.02010.1016/j.enpol.2005.09.020Search in Google Scholar

[3] Carapellucci, R., & Milazzo, A. (2007) Repowering combined cycle power plants by a modified STIG configuration. Energy Conversion and Management, 48, 1590–1600. DOI: 10.1016/j.enconman.2006.11.024. http://dx.doi.org/10.1016/j.enconman.2006.11.02410.1016/j.enconman.2006.11.024Search in Google Scholar

[4] Difs, K., & Trygg, L. (2009). Pricing district heating by marginal cost. Energy Policy, 37, 606–616. DOI: 10.1016/j.enpol.2008.10.003. http://dx.doi.org/10.1016/j.enpol.2008.10.00310.1016/j.enpol.2008.10.003Search in Google Scholar

[5] Facchini, B., Fiaschi, D., & Manfrida, G. (1997). SCGT/CC: An innovative cycle with advanced environmental and peakload shaving features. Energy Conversion and Management, 38, 1647–1653. DOI: 10.1016/S0196-8904(96)00205-1. http://dx.doi.org/10.1016/S0196-8904(96)00205-110.1016/S0196-8904(96)00205-1Search in Google Scholar

[6] Franco, A., & Casarosa, C. (2002). On some perspectives for increasing the efficiency of combined cycle power plants. Applied Thermal Engineering, 22, 1501–1518. DOI: 10.1016/4S1359-4311(02)00053-4. http://dx.doi.org/10.1016/S1359-4311(02)00053-4Search in Google Scholar

[7] Jonsson, M., & Yan, J. (2005). Humidified gas turbines-a review of proposed and implemented cycles. Energy, 30, 1013–1078. DOI: 10.1016/j.energy.2004.08.005. http://dx.doi.org/10.1016/j.energy.2004.08.00510.1016/j.energy.2004.08.005Search in Google Scholar

[8] Kristiansen, T. (2007). The Nordic approach to market-based provision of ancillary services. Energy Policy, 35, 3681–3700. DOI: 10.1016/j.enpol.2007.01.004. http://dx.doi.org/10.1016/j.enpol.2007.01.00410.1016/j.enpol.2007.01.004Search in Google Scholar

[9] Kalitventzeff, B., Maréchal, F., & Closon, H. (2001). Better solutions for process sustainability through better insight in process energy integration. Applied Thermal Engineering, 21, 1349–1368. DOI: 10.1016/S1359-4311(01)00024-2. http://dx.doi.org/10.1016/S1359-4311(01)00024-210.1016/S1359-4311(01)00024-2Search in Google Scholar

[10] Maidment, G. G., & Prosser, G. (2000). The use of CHP and absorption cooling in cold storage. Applied Thermal Engineering, 20, 1059–1073. DOI:10.1016/S1359-4311(99)00055-1. http://dx.doi.org/10.1016/S1359-4311(99)00055-110.1016/S1359-4311(99)00055-1Search in Google Scholar

[11] Maréchal, F., & Kalitventzeff, B. (1997). Identification of the optimal pressure levels in steam networks using integrated combined heat and power method. Chemical Engineering Science, 52, 2977–2989. DOI: 10.1016/S0009-2509(97)00102-4. http://dx.doi.org/10.1016/S0009-2509(97)00102-410.1016/S0009-2509(97)00102-4Search in Google Scholar

[12] Panno, D., Messineo, A., & Dispenza, A. (2007). Cogeneration plant in a pasta factory: Energy saving and environmental benefit. Energy, 32, 746–754. DOI: 10.1016/j.energy.2006.06.004. http://dx.doi.org/10.1016/j.energy.2006.06.00410.1016/j.energy.2006.06.004Search in Google Scholar

[13] Pasha, A., & Jolly, S. (1995). Combined cycle heat recovery steam generators optimum capabilities and selection criteria. Heat Recovery systems and CHP, 15, 147–154. DOI: 10.1016/0890-4332(95)90021-7. http://dx.doi.org/10.1016/0890-4332(95)90021-710.1016/0890-4332(95)90021-7Search in Google Scholar

[14] Poullikkas, A. (2005). An overview of current and future sustainable gas turbine technologies. Renewable and Sustainable Energy Reviews, 9, 409–443. DOI: 10.1016/j.rser.2004.05.009. http://dx.doi.org/10.1016/j.rser.2004.05.00910.1016/j.rser.2004.05.009Search in Google Scholar

[15] Raineri, R., RÍos, S., & Schiele, D. (2006). Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison. Energy Policy, 34, 1540–1555. DOI: 10.1016/j.enpol.2004.11.015. http://dx.doi.org/10.1016/j.enpol.2004.11.01510.1016/j.enpol.2004.11.015Search in Google Scholar

[16] Slovak Regulatory Office for Network Industries (2009). Regulatory Office’s decrees. Retrieved April 30, 2009, from http://www.urso.gov.sk/sk/regulacia/elektroenergetika/cr/e-cr. Search in Google Scholar

[17] Svensson, I.-L., Jönsson, J., Berntsson, T., & Moshfegh, B. (2008). Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology. Energy Policy, 36, 4178–4185. DOI: 10.1016/j.enpol.2008.07.017. http://dx.doi.org/10.1016/j.enpol.2008.07.01710.1016/j.enpol.2008.07.017Search in Google Scholar

[18] Thorin, E., Brand, H., & Weber, C. (2005). Long-term optimization of cogeneration systems in a competitive market environment. Applied Energy, 81, 152–169. DOI: 10.1016/j.apenergy.2004.04.012. http://dx.doi.org/10.1016/j.apenergy.2004.04.01210.1016/j.apenergy.2004.04.012Search in Google Scholar

[19] Variny, M., & Mierka, O. (2009). Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services. Applied Energy, 86, 888–894. DOI: 10.1016/j. apenergy.2008.11.004. http://dx.doi.org/10.1016/j.apenergy.2008.11.00410.1016/j.apenergy.2008.11.004Search in Google Scholar

[20] Ziher, D., & Poredos, A. (2006). Economics of a trigeneration systems in a hospital. Applied Thermal Engineering, 26, 680–687. DOI: 10.1016/j.apthermaleng.2005.09.007. http://dx.doi.org/10.1016/j.applthermaleng.2005.09.00710.1016/j.applthermaleng.2005.09.007Search in Google Scholar

Published Online: 2010-2-5
Published in Print: 2010-4-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0097-4/html
Scroll to top button