Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 2, 2011

Role of LPXRFamide peptide in the neuroendocrine regulation of reproduction in fish

  • Md. Shahjahan EMAIL logo and Hironori Ando
From the journal Open Life Sciences

Abstract

The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin (GTH) secretion. This review focuses on a family of neuropeptides, LPXRFamide (LPXRFa) peptides, which have been implicated in the regulation of GTH secretion. LPXRFa acts on the pituitary via a G protein-coupled receptor, LPXRFa-R, to enhance gonadal development and maintenance by increasing gonadotropin release and synthesis. Because LPXRFa exists and functions in several fish species, LPXRFa is considered to be a key neurohormone in fish reproduction control. The precursors to LPXRFamide peptides encoded plural LPXRFamide peptides and were highly divergent in vertebrates, particularly in lower vertebrates. Tissue distribution analyses indicated that LPXRFamide peptides were highly concentrated in the hypothalamus and other brainstem regions. In view of the localization and expression of LPXRFamide peptides in the hypothalamo-hypophysial system, LPXRFamide peptide in fish increase GTH release in vitro and in vivo. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of LPXRFa, a newly discovered key neurohormone.

[1] Yaron Z., Gur G., Melamed P., Rosenfeld H., Elizur A., Levavi-Sivan B., Regulation of fish gonadotropins, Int. Rev. Cytol., 2003, 225, 131–185 http://dx.doi.org/10.1016/S0074-7696(05)25004-010.1016/S0074-7696(05)25004-0Search in Google Scholar

[2] Zohar Y., Muñoz-Cueto J.A., Elizur A., Kah O., Neuroendocrinology of reproduction in teleost fish, Gen. Comp. Endocrinol., 2010, 165, 438–455 http://dx.doi.org/10.1016/j.ygcen.2009.04.01710.1016/j.ygcen.2009.04.017Search in Google Scholar

[3] Kriegsfeld L.J., Mei D.F., Bentley G.E., Ubuka T., Mason A.O., Inoue K., et al., Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals, Proc. Natl. Acad. Sci. USA, 2006, 103, 2410–2415 http://dx.doi.org/10.1073/pnas.051100310310.1073/pnas.0511003103Search in Google Scholar

[4] Yang H-Y.T., Fratta W., Majane E.A., Costa E., Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine, Proc. Natl. Acad. Sci. USA, 1985, 82, 7757–7761 http://dx.doi.org/10.1073/pnas.82.22.775710.1073/pnas.82.22.7757Search in Google Scholar

[5] Yang H-Y.T., Martin R.M., Isolation and characterization of a neuropeptide FF-like peptide from brain and spinal cord of rat, Soc. Neurosci. Abstr., 1995, 21, 760 Search in Google Scholar

[6] Bonnard E., Burlet-Schiltz O., Frances B., Mazarguil H., Monsarrat B., Zajac J.M., et al., Identification of neuropeptide FF-related peptides in rodent spinal cord, Peptides, 2001, 22, 1085–1092 http://dx.doi.org/10.1016/S0196-9781(01)00425-910.1016/S0196-9781(01)00425-9Search in Google Scholar

[7] Burlet-Schiltz O., Mazarguil H., Sol J.C., Chaynes P., Monsarrat B., Zajac J.M., et al., Identification of neuropeptide FF-related peptides in human cerebrospinal fluid by mass spectrometry, FEBS Lett., 2002, 532, 313–318 http://dx.doi.org/10.1016/S0014-5793(02)03686-410.1016/S0014-5793(02)03686-4Search in Google Scholar

[8] Bonnard E., Burlet-Schiltz O., Monsarrat B., Girard J.P., Zajac J.M., Identification of proNeuropeptide FFA peptides processed in neuronal and nonneuronal cells and in nervous tissue, Eur. J. Biochem., 2003, 270, 4187–4199 http://dx.doi.org/10.1046/j.1432-1033.2003.03816.x10.1046/j.1432-1033.2003.03816.xSearch in Google Scholar PubMed

[9] Tsutsui K., Saigoh E., Ukena K., Teranishi H., Fujisawa Y., Kikuchi M., et al., A novel avian hypothalamic peptide inhibiting gonadotropin release, Biochem. Biophys. Res. Commun., 2000, 275, 661–667 http://dx.doi.org/10.1006/bbrc.2000.335010.1006/bbrc.2000.3350Search in Google Scholar PubMed

[10] Satake H., Hisada M., Kawada T., Minakata H., Ukena K., Tsutsui K., Characterization of a cDNA encoding a novel avian hypothalamic neuropeptide exerting an inhibitory effect on gonadotropin release, Biochem J., 2001, 354, 379–385 http://dx.doi.org/10.1042/0264-6021:354037910.1042/bj3540379Search in Google Scholar

[11] Ukena K., Ubuka T., Tsutsui K., Distribution of a novel avian gonadotropin-inhibitory hormone in the quail brain, Cell Tissue Res., 2003, 312, 73–79 10.1007/s00441-003-0700-xSearch in Google Scholar PubMed

[12] Ubuka T., Ueno M., Ukena K., Tsutsui K., Developmental changes in gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica) hypothalamo-hypophysial system, J. Endocrinol., 2003, 178, 311–318 http://dx.doi.org/10.1677/joe.0.178031110.1677/joe.0.1780311Search in Google Scholar

[13] Osugi T., Ukena K., Bentley G.E., O’Brien S., Moore I.T., Wingfield J.C., et al., Gonadotropin-inhibitory hormone in Gambel’s white-crowned sparrows: cDNA identification, transcript localization and functional effects in laboratory and field experiments, J. Endocrinol., 2004, 182, 33–42 http://dx.doi.org/10.1677/joe.0.182003310.1677/joe.0.1820033Search in Google Scholar

[14] Fukusumi S., Habata Y., Yoshida H., Iijima N., Kawamata Y., Hosoya M., et al., Characteristics and distribution of endogenous RFamide-related peptide-1, Biochim. Biophys. Acta., 2001, 1540, 221–232 http://dx.doi.org/10.1016/S0167-4889(01)00135-510.1016/S0167-4889(01)00135-5Search in Google Scholar

[15] Ukena K., Iwakoshi E., Minakata H., Tsutsui K., A novel rat hypothalamic RFamide-related peptide identified by immunoaffinity chromatography and mass spectrometry, FEBS Lett., 2002, 512, 255–258 http://dx.doi.org/10.1016/S0014-5793(02)02275-510.1016/S0014-5793(02)02275-5Search in Google Scholar

[16] Yoshida H., Habata Y., Hosoya M., Kawamata Y., Kitada C., Hinuma S., Molecular properties of endogenous RFamide-related peptide-3 and its interaction with receptors, Biochim. Biophys. Acta., 2003, 1593, 151–157 http://dx.doi.org/10.1016/S0167-4889(02)00389-010.1016/S0167-4889(02)00389-0Search in Google Scholar

[17] Koda A., Ukena K., Teranishi H., Ohta S., Yamamoto K., Kikuyama S., et al., A novel amphibian hypothalamic neuropeptide: isolation, localization, and biological activity, Endocrinology, 2002, 143, 411–419 http://dx.doi.org/10.1210/en.143.2.41110.1210/en.143.2.411Search in Google Scholar

[18] Chartrel N., Dujardin C., Leprince J., Desrues L., Tonon M.C., Cellier E., et al., Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta, J. Comp. Neurol., 2002, 448, 111–127 http://dx.doi.org/10.1002/cne.1025310.1002/cne.10253Search in Google Scholar PubMed

[19] Ukena K., Koda A., Yamamoto K., Kobayashi T., Iwakoshi-Ukena E., Minakata H., et al., Novel neuropeptides related to frog growth hormone-releasing peptide: isolation, sequence, and functional analysis, Endocrinology, 2003, 144, 3879–3884 http://dx.doi.org/10.1210/en.2003-035910.1210/en.2003-0359Search in Google Scholar PubMed

[20] Sawada K., Ukena K., Satake H., Iwakoshi E., Minakata H., Tsutsui K., Novel fish hypothalamic neuropeptide; Cloning of a cDNA encoding the precursor polypeptide and identification and localization of the mature peptide, Eur. J. Biochem., 2002, 269, 6000–6008 http://dx.doi.org/10.1046/j.1432-1033.2002.03351.x10.1046/j.1432-1033.2002.03351.xSearch in Google Scholar PubMed

[21] Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., et al., A prolactin-releasing peptide in the brain, Nature, 1998, 393, 272–276 http://dx.doi.org/10.1038/3051510.1038/30515Search in Google Scholar PubMed

[22] Fujimoto M., Takeshita K., Wang X., Takabatake I., Fujisawa Y., Teranishi H., et al., Isolation and characterization of a novel bioactive peptide, Carassius RFamide (C-RFa), from the brain of the Japanese crucian carp, Biochem. Biophys. Res. Commun., 1998, 242, 436–440 http://dx.doi.org/10.1006/bbrc.1997.797310.1006/bbrc.1997.7973Search in Google Scholar PubMed

[23] Moriyama S., Ito T., Takahashi A., Amano M., Sower S.A., Hirano T., et al., A homolog of mammalian PRL-releasing peptide (fish arginyl-phenylalanylamide peptide) is a major hypothalamic peptide of PRL release in teleost fish, Endocrinology, 2002, 143, 2071–2079 http://dx.doi.org/10.1210/en.143.6.207110.1210/en.143.6.2071Search in Google Scholar

[24] Seale A.P., Itoh T., Moriyama S., Takahashi A., Kawauchi H., Sakamoto T., et al., Isolation and characterization of a homologue of mammalian prolactin-releasing peptide from the tilapia brain and its effect on prolactin release from the tilapia pituitary, Gen. Comp. Endocrinol., 2002, 125, 328–339 http://dx.doi.org/10.1006/gcen.2001.772710.1006/gcen.2001.7727Search in Google Scholar PubMed

[25] Ohtaki T., Shintani Y., Honda S., Matsumoto H., Hori A., Kanehashi K., et al., Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-proteincoupled receptor, Nature, 2001, 411, 613–617 http://dx.doi.org/10.1038/3507913510.1038/35079135Search in Google Scholar PubMed

[26] Kotani M., Detheux M., Vandenbogaerde A., Communi D., Vanderwinden J.M., Le Poul E., et al., The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G-protein-coupled receptor GPR54, J. Biol. Chem., 2001, 276, 34631–34636 http://dx.doi.org/10.1074/jbc.M10484720010.1074/jbc.M104847200Search in Google Scholar PubMed

[27] Fukusumi S., Yoshida H., Fujii R., Maruyama M., Komatsu H., Habata Y., et al., A new peptidic ligand and its receptor regulating adrenal function in rats, J. Biol. Chem., 2003, 278, 46387–46395 http://dx.doi.org/10.1074/jbc.M30527020010.1074/jbc.M305270200Search in Google Scholar PubMed

[28] Chartrel N., Dujardin C., Anouar Y., Leprince J., Beauvillain J.C., Vaudry H., Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity, Proc. Natl. Acad. Sci. USA, 2003, 100, 15247–15252 http://dx.doi.org/10.1073/pnas.243467610010.1073/pnas.2434676100Search in Google Scholar PubMed PubMed Central

[29] Tsutsui K., Bentley G.E., Ciccone N., Structure, action and functional significance of GnIH. In: Dawson A., Sharp P.J., (Eds.), Functional Avian Endocrinology, Narosa Publishing House, New Delhi, 2005, 73–82 Search in Google Scholar

[30] Tsutsui K., Ubuka T., Yin H., Osugi T., Ukena K., Bentley G.E., et al., Mode of action and functional significance of avian gonadotropin-inhibitory hormone (GnIH): a review, J. Exp. Zool. A: Comp. Exp. Biol., 2006, 305, 801–806 Search in Google Scholar

[31] Tsutsui K., Bentley G.E., Ubuka T., Saigoh E., Yin H., Osugi T., et al., The general and comparative biology of gonadotropin-inhibitory hormone (GnIH), Gen. Comp. Endocrinol., 2007a, 153, 365–370 http://dx.doi.org/10.1016/j.ygcen.2006.10.00510.1016/j.ygcen.2006.10.005Search in Google Scholar PubMed

[32] Tsutsui K., Ubuka T., Yin H., Ukena K., Bentley G., Sharp P., et al., Review: discovery of gonadotropin-inhibitory hormone in a domesticated bird, and its mode of action and functional significance, J. Ornithol., 2007b, 147, 53–54 Search in Google Scholar

[33] Bentley G.E., Perfito N., Ukena K., Tsutsui K., Wingfield J.C., Gonadotropininhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chickengonadotropin-releasing hormone, J. Neuroendocrinol., 2003, 15, 794–802 http://dx.doi.org/10.1046/j.1365-2826.2003.01062.x10.1046/j.1365-2826.2003.01062.xSearch in Google Scholar PubMed

[34] Bentley G.E., Jensen J.P., Kaur G.J., Wacker D.W., Tsutsui K., Wingfield J.C., Rapid inhibition of female sexual behavior by gonadotropin-inhibitory hormone (GnIH), Horm. Behav., 2006, 49, 550–555 http://dx.doi.org/10.1016/j.yhbeh.2005.12.00510.1016/j.yhbeh.2005.12.005Search in Google Scholar PubMed

[35] Ubuka T., Bentley G.E., Ukena K., Wingfield J.C., Tsutsui K., Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain, Proc. Natl. Acad. Sci. USA, 2005, 102, 3052–3057 http://dx.doi.org/10.1073/pnas.040384010210.1073/pnas.0403840102Search in Google Scholar PubMed PubMed Central

[36] Ubuka T., Ukena K., Sharp P.J., Bentley G.E., Tsutsui K., Gonadotropininhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail, Endocrinology, 2006, 147, 1187–1194 http://dx.doi.org/10.1210/en.2005-117810.1210/en.2005-1178Search in Google Scholar PubMed

[37] Ubuka T., Kim S., Huang Y.C., Reid J., Jiang J., Osugi T., et al., Gonadotropin-inhibitory hormone neurons interact directly with gonadotropinreleasing hormone-I and -II neurons in European starling brain, Endocrinology, 2008, 149, 268–278 http://dx.doi.org/10.1210/en.2007-098310.1210/en.2007-0983Search in Google Scholar PubMed

[38] Ciccone N.A., Dunn I.C., Boswell T., Tsutsui K., Ubuka T., Ukena K., et al., Gonadotrophin inhibitory hormone depresses gonadotrophin alpha and follicle-stimulating hormone beta subunit expression in the pituitary of the domestic chicken, J. Neuroendocrinol., 2004, 16, 999–1006 http://dx.doi.org/10.1111/j.1365-2826.2005.01260.x10.1111/j.1365-2826.2005.01260.xSearch in Google Scholar PubMed

[39] Yin H., Ukena K., Ubuka T., Tsutsui K., A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity, J. Endocrinol., 2005, 184, 257–266 http://dx.doi.org/10.1677/joe.1.0592610.1677/joe.1.05926Search in Google Scholar PubMed

[40] Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M., et al., Identification and characterization of two G protein-coupled receptors for neuropeptide FF, J. Biol. Chem., 2000, 275, 39324–39331 http://dx.doi.org/10.1074/jbc.M00438520010.1074/jbc.M004385200Search in Google Scholar PubMed

[41] Hinuma S., Shintani Y., Fukusumi S., Iijima N., Matsumoto Y., Hosoya M., et al., New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals, Nature Cell. Biol., 2000, 2, 703–708 http://dx.doi.org/10.1038/3503632610.1038/35036326Search in Google Scholar PubMed

[42] Ikemoto T., Park M.K., Chicken RFamide-related Peptide (GnIH) and Two Distinct Receptor Subtypes: Identification, Molecular Characterization, and Evolutionary Considerations, J. Reprod. Dev., 2005, 51, 359–377 http://dx.doi.org/10.1262/jrd.1608710.1262/jrd.16087Search in Google Scholar PubMed

[43] Zhang Y., Li S., Liu Y., Lu D., Chen H., Huang X., et al., Structural diversity of the gnih/gnih receptor system in teleost: Its involvement in early development and the negative control of LH release, Peptides, 2010, 31, 1034–1043 http://dx.doi.org/10.1016/j.peptides.2010.03.00310.1016/j.peptides.2010.03.003Search in Google Scholar PubMed

[44] Dardente H., Birnie M., Lincoln G.A., Hazlerigg D.G., RFamide-Related Peptide and its Cognate Receptor in the Sheep: cDNA Cloning, mRNA Distribution in the Hypothalamus and the Effect of Photoperiod, J. Neuroendocrinol., 2008, 20, 1252–1259 http://dx.doi.org/10.1111/j.1365-2826.2008.01784.x10.1111/j.1365-2826.2008.01784.xSearch in Google Scholar PubMed

[45] Smith J.T., Rao A., Pereira A., Caraty A., Millar R.P., Clarke I.J., Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: evidence that gonadotropes are not direct targets of kisspeptin in vivo, Endocrinology, 2008, 149, 1951–1959 http://dx.doi.org/10.1210/en.2007-142510.1210/en.2007-1425Search in Google Scholar

[46] Revel F.G., Saboureau M., Pevet P., Simonneaux V., Mikkelsen J.D., RFamide-related peptide gene is a melatonin-driven photoperiodic gene, Endocrinology, 2008, 149, 902–912 http://dx.doi.org/10.1210/en.2007-084810.1210/en.2007-0848Search in Google Scholar

[47] Price D.A., Greenberg M.J., Structure of a molluscan cardioexcitatory neuropeptide, Science, 1977, 197, 670–671 http://dx.doi.org/10.1126/science.87758210.1126/science.877582Search in Google Scholar

[48] Dockray G.J, Reeve J.R, Shively J., Gayton R.J., Barnard C.S., A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide, Nature, 1983, 305, 328–330 http://dx.doi.org/10.1038/305328a010.1038/305328a0Search in Google Scholar

[49] Raffa R.B, The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals, Peptides, 1988, 9, 915–922 http://dx.doi.org/10.1016/0196-9781(88)90141-610.1016/0196-9781(88)90141-6Search in Google Scholar

[50] Rastogi R.K, D’Aniello B., Pinelli C., Fiorentino M., Di Fiore M.M., Di Meglio M., et al., FMRFamide in the amphibian brain: a comprehensive survey”, Microsc. Res. Technol, 2001, 54, 158–172 http://dx.doi.org/10.1002/jemt.113010.1002/jemt.1130Search in Google Scholar PubMed

[51] Shahjahan M., Ikegami T., Osugi T., Ukena K., Doi H., Hattori A., et al., Synchronised expressions of LPXRFamide peptide and its receptor genes: seasonal, diurnal and circadian changes during spawning period in grass puffer, J. Neuroendocrinol., 2010, 23, 39–51 http://dx.doi.org/10.1111/j.1365-2826.2010.02081.x10.1111/j.1365-2826.2010.02081.xSearch in Google Scholar PubMed

[52] Douglass J., Civelli O., Herbert E., Polyprotein gene expression: generation of diversity of neuroendocrine peptides, Annu. Rev. biochem., 1984, 53, 665–715 http://dx.doi.org/10.1146/annurev.bi.53.070184.00331310.1146/annurev.bi.53.070184.003313Search in Google Scholar PubMed

[53] Lee Y.R., Tsunekawa K., Moon M.J., Um H.N., Hwang J.I., Osugi T., et al., Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates, Endocrinology, 2009, 150, 2837–2846 http://dx.doi.org/10.1210/en.2008-167910.1210/en.2008-1679Search in Google Scholar PubMed

[54] Amano M., Moriyama S., Iigo M., Kitamura S., Amiya N., Yamamori K., et al., Novel fish hypothalamic neuropeptides stimulate the release of gonadotrophins and growth hormone from the pituitary of sockeye salmon, J. Endocrinol., 2006, 188, 417–423 http://dx.doi.org/10.1677/joe.1.0649410.1677/joe.1.06494Search in Google Scholar PubMed

[55] Maddineni S., Ocón-Grove O.M., Krzysik-Walker S.M., Hendricks G.L., Proudman J.A., Ramachandran R., Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids, J. Neuroendocrinol., 2008, 20, 1078–1088 http://dx.doi.org/10.1111/j.1365-2826.2008.01765.x10.1111/j.1365-2826.2008.01765.xSearch in Google Scholar

[56] Ikegami T., Motohashi E., Doi H., Hattori A., Ando H., Synchronized diurnal and circadian expressions of four subtypes of melatonin receptor genes in the diencephalon of a puffer fish with lunar-related spawning cycles, Neuroscience Lett., 2009, 462, 58–63 http://dx.doi.org/10.1016/j.neulet.2009.06.07610.1016/j.neulet.2009.06.076Search in Google Scholar

[57] Clarke I.J., Sari I.P., Qi Y., Smith J.T., Parkington H.C., Ubuka T., et al., Potent action of RFRP-3 on pituitary gonadotropes indicative of an hypophysiotropic role in the negative regulation of gonadotropin secretion, Endocrinology, 2008, 149, 5811–5821 http://dx.doi.org/10.1210/en.2008-057510.1210/en.2008-0575Search in Google Scholar

[58] Panula P., Aarnisalo A.A., Wasowicz K., Neuropeptide FF, a mammalian neuropeptide with multiple functions, Prog. Neurobiol., 1996, 48, 461–487 http://dx.doi.org/10.1016/0301-0082(96)00001-910.1016/0301-0082(96)00001-9Search in Google Scholar

[59] Ibata Y., Iijima N., Kataoka Y., Kakihara K., Tanaka M., Hosoya M., et al., Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain, Neuroscience Res., 2000, 38, 223–230 http://dx.doi.org/10.1016/S0168-0102(00)00182-610.1016/S0168-0102(00)00182-6Search in Google Scholar

[60] Tsutsui K., A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance, Prog. Neurobiol., 2009, 88, 76–88 http://dx.doi.org/10.1016/j.pneurobio.2009.02.00310.1016/j.pneurobio.2009.02.003Search in Google Scholar PubMed

[61] Johnson M.A., Tsutsui K., Fraley G.S., Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat, Horm. Behav., 2007, 51, 171–180 http://dx.doi.org/10.1016/j.yhbeh.2006.09.00910.1016/j.yhbeh.2006.09.009Search in Google Scholar PubMed PubMed Central

[62] Murakami M., Matsuzaki T., Iwasa T., Yasui T., Irahara M., Osugi T., et al., Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats, J. Endocrinol., 2008, 199, 105–112 http://dx.doi.org/10.1677/JOE-08-019710.1677/JOE-08-0197Search in Google Scholar PubMed

Published Online: 2011-9-2
Published in Print: 2011-10-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-011-0048-2/html
Scroll to top button